45 research outputs found

    Investigation of finite-volume methods to capture shocks and turbulence spectra in compressible flows

    Get PDF
    The aim of the present paper is to provide a comparison between several finite-volume methods of different numerical accuracy: second-order Godunov method with PPM interpolation and high-order finite-volume WENO method. The results show that while on a smooth problem the high-order method perform better than the second-order one, when the solution contains a shock all the methods collapse to first-order accuracy. In the context of the decay of compressible homogeneous isotropic turbulence with shocklets, the actual overall order of accuracy of the methods reduces to second-order, despite the use of fifth-order reconstruction schemes at cell interfaces. Most important, results in terms of turbulent spectra are similar regardless of the numerical methods employed, except that the PPM method fails to provide an accurate representation in the high-frequency range of the spectra. It is found that this specific issue comes from the slope-limiting procedure and a novel hybrid PPM/WENO method is developed that has the ability to capture the turbulent spectra with the accuracy of a high-order method, but at the cost of the second-order Godunov method. Overall, it is shown that virtually the same physical solution can be obtained much faster by refining a simulation with the second-order method and carefully chosen numerical procedures, rather than running a coarse high-order simulation. Our results demonstrate the importance of evaluating the accuracy of a numerical method in terms of its actual spectral dissipation and dispersion properties on mixed smooth/shock cases, rather than by the theoretical formal order of convergence rate.Comment: This paper was previously composed of 2 parts, and this submission was part 1. It is now replaced by the combined pape

    High-order gas-kinetic scheme with TENO class reconstruction for the Euler and Navier-Stokes equations

    Full text link
    The high-order gas-kinetic scheme(HGKS) with WENO spatial reconstruction method has been extensively validated through many numerical experiments, demonstrating its superior accuracy efficiency, and robustness. Compared with WENO class schemes, TENO class schemes exhibit significantly improved robustness, low numerical dissipation and sharp discontinuity capturing. In this paper, two kinds of fifth-order HGKS with TENO class schemes are designed. One involves replacing WENO5 scheme with the TENO5 scheme in the conventional WENO5-GKS. WENO and TENO schemes only provide the non-equilibrium state values at the cell interface. The slopes of the non-equilibrium state along with the equilibrium values and slopes, are obtained by additional linear reconstruction. Another kind of TENO5-D GKS is similar to WENO5-AO GKS. Following a strong scale-separation procedure, a tailored novel ENO-like stencil selection strategy is proposed such that the high-order accuracy is restored in smooth regions by selecting the candidate reconstruction on the large stencil while the ENO property is enforced near discontinuities by adopting the candidate reconstruction from smooth small stencils. The such TENO schemes are TENO-AA and TENO-D scheme. The HGKS scheme based on WENO-AO or TENO-D reconstruction take advantage of the large stencil to provide point values and slopes of the non-equilibrium state. By dynamically merging the reconstructed non-equilibrium slopes, extra reconstruction of the equilibrium state at the beginning of each time step can be avoided. The simplified schemes have better robustness and efficiency than the conventional WENO5-GKS or TENO5-GKS. TENO-D GKS is also as easy to develop as WENO-AO GKS to high-order finite volume method for unstructured mesh.Comment: arXiv admin note: text overlap with arXiv:2304.05572; text overlap with arXiv:1905.08489 by other author

    A new smoothed particle hydrodynamics method based on high-order moving-least-square targeted essentially non-oscillatory scheme for compressible flows

    Full text link
    In this study, we establish a hybrid high-order smoothed particle hydrodynamics (SPH) framework (MLS-TENO-SPH) for compressible flows with discontinuities, which is able to achieve genuine high-order convergence in smooth regions and also capture discontinuities well in non-smooth regions. The framework can be either fully Lagrangian, Eulerian or realizing arbitary-Lagrangian-Eulerian (ALE) feature enforcing the isotropic particle distribution in specific cases. In the proposed framework, the computational domain is divided into smooth regions and non-smooth regions, and these two regions are determined by a strong scale separation strategy in the targeted essentially non-oscillatory (TENO) scheme. In smooth regions, the moving-least-square (MLS) approximation is used for evaluating high-order derivative operator, which is able to realize genuine high-order construction; in non-smooth regions, the new TENO scheme based on Vila's framework with several new improvements will be deployed to capture discontinuities and high-wavenumber flow scales with low numerical dissipation. The present MLS-TENO-SPH method is validated with a set of challenging cases based on the Eulerian, Lagrangian or ALE framework. Numerical results demonstrate that the MLS-TENO-SPH method features lower numerical dissipation and higher efficiency than the conventional method, and can restore genuine high-order accuracy in smooth regions. Overall, the proposed framework serves as a new exploration in high-order SPH methods, which are potential for compressible flow simulations with shockwaves.Comment: 36 pages, 15 figures, accepted by Journal of Computational Physics on June 1st, 202
    corecore