779 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Vibration Isolation Technology (VIT) ATD Project

    Get PDF
    A fundamental advantage for performing material processing and fluid physics experiments in an orbital environment is the reduction in gravity driven phenomena. However, experience with manned spacecraft such as the Space Transportation System (STS) has demonstrated a dynamic acceleration environment far from being characterized as a 'microgravity' platform. Vibrations and transient disturbances from crew motions, thruster firings, rotating machinery etc. can have detrimental effects on many proposed microgravity science experiments. These same disturbances are also to be expected on the future space station. The Microgravity Science and Applications Division (MSAD) of the Office of Life and Microgravity Sciences and Applications (OLMSA), NASA Headquarters recognized the need for addressing this fundamental issue. As a result an Advanced Technology Development (ATD) project was initiated in the area of Vibration Isolation Technology (VIT) to develop methodologies for meeting future microgravity science needs. The objective of the Vibration Isolation Technology ATD project was to provide technology for the isolation of microgravity science experiments by developing methods to maintain a predictable, well defined, well characterized, and reproducible low-gravity environment, consistent with the needs of the microgravity science community. Included implicitly in this objective was the goal of advising the science community and hardware developers of the fundamental need to address the importance of maintaining, and how to maintain, a microgravity environment. This document will summarize the accomplishments of the VIT ATD which is now completed. There were three specific thrusts involved in the ATD effort. An analytical effort was performed at the Marshall Space Flight Center to define the sensitivity of selected experiments to residual and dynamic accelerations. This effort was redirected about half way through the ATD focusing specifically on the sensitivity of protein crystals to a realistic orbital environment. The other two thrusts of the ATD were performed at the Lewis Research Center. The first was to develop technology in the area of reactionless mechanisms and robotics to support the eventual development of robotics for servicing microgravity science experiments. This activity was completed in 1990. The second was to develop vibration isolation and damping technology providing protection for sensitive science experiments. In conjunction with the this activity, two workshops were held. The results of these were summarized and are included in this report

    User needs, benefits and integration of robotic systems in a space station laboratory

    Get PDF
    The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 370)

    Get PDF
    This bibliography lists 219 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Dec. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    A prototype supervised intelligent robot for helping astronauts

    Get PDF
    The development status is described of a prototype supervised intelligent robot for space application for purposes of (1) helping the crew of a spacecraft such as the Space Station with various tasks such as holding objects and retrieving/replacing tools and other objects from/into storage, and for purposes of (2) retrieving detached objects, such as equipment or crew, that have become separated from their spacecraft. In addition to this set of tasks in this low Earth orbiting spacecraft environment, it is argued that certain aspects of the technology can be viewed as generic in approach, thereby offering insight into intelligent robots for other tasks and environments. Also described are characterization results on the usable reduced gravity environment in an aircraft flying parabolas (to simulate weightlessness) and results on hardware performance there. These results show it is feasible to use that environment for evaluative testing of dexterous grasping based on real-time visual sensing of freely rotating and translating objects

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems
    • …
    corecore