305 research outputs found

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Recent Advances in Artificial Intelligence-Assisted Ultrasound Scanning

    Get PDF
    Funded by the Spanish Ministry of Economic Affairs and Digital Transformation (Project MIA.2021.M02.0005 TARTAGLIA, from the Recovery, Resilience, and Transformation Plan financed by the European Union through Next Generation EU funds). TARTAGLIA takes place under the R&D Missions in Artificial Intelligence program, which is part of the Spain Digital 2025 Agenda and the Spanish National Artificial Intelligence Strategy.Ultrasound (US) is a flexible imaging modality used globally as a first-line medical exam procedure in many different clinical cases. It benefits from the continued evolution of ultrasonic technologies and a well-established US-based digital health system. Nevertheless, its diagnostic performance still presents challenges due to the inherent characteristics of US imaging, such as manual operation and significant operator dependence. Artificial intelligence (AI) has proven to recognize complicated scan patterns and provide quantitative assessments for imaging data. Therefore, AI technology has the potential to help physicians get more accurate and repeatable outcomes in the US. In this article, we review the recent advances in AI-assisted US scanning. We have identified the main areas where AI is being used to facilitate US scanning, such as standard plane recognition and organ identification, the extraction of standard clinical planes from 3D US volumes, and the scanning guidance of US acquisitions performed by humans or robots. In general, the lack of standardization and reference datasets in this field makes it difficult to perform comparative studies among the different proposed methods. More open-access repositories of large US datasets with detailed information about the acquisition are needed to facilitate the development of this very active research field, which is expected to have a very positive impact on US imaging.Depto. de Estructura de la Materia, FĂ­sica TĂ©rmica y ElectrĂłnicaFac. de Ciencias FĂ­sicasTRUEMinistry of Economic Affairs and Digital Transformation from the Recovery, Resilience, and Transformation PlanNext Generation EU fundspu

    Ultrasound Probe Calibration Method of Single-Wire Phantom Using Levenberg-Marquardt Algorithm

    Get PDF
    A freehand three-dimensional (3D) ultrasound system is a method of acquiring images using a 3D ultrasound probe or conventional two-dimensional (2D) ultrasound probe to give a 3D visualization of an object inside the body. Ultrasounds are used extensively in clinical applications since they are advantageous in that they do not bring dangerous radiation effects and have a low cost. However, a probe calibration method is needed to transform the coordinate position into a 3D visualization display, especially for image-guided intervention. The current ultrasound probe calibration system usually uses the numerical regression method for the N-wire phantom, which has problems in accuracy and reliability due to nonlinear point scattered ultrasound image data. Hence, a method for ultrasound probe positional calibration of single-wire phantom using the Levenberg-Marquardt algorithm (LMA) was proposed to overcome this weakness. This experiment consisted of an optical tracking system setup, a 2D ultrasound probe with marker, an ultrasound machine, and a single-wire object in a water container equipped with a marker. The position and orientation of the marker in a 2D ultrasound probe and the marker in the water container were tracked using the optical tracking system. A 2D ultrasound probe was equipped with a marker connected wirelessly using an optical tracking system to capture the single-wire object. The resulting sequences of 2D ultrasound images were reconstructed and visualized into 3D ultrasound images using three transformations, ultrasound beam to ultrasound probe’s marker, single-wire phantom position to container’s marker, and the 3D visualization transformation. The LMA was used to determine the best optimization parameters for determining the exact position and representing that 3D visualization. The experiment result showed that the lowest mean square error (MSE), rotation error, and translation error were 0.45 mm, 0.25°, and 0.3828 mm, respectively

    Review of photoacoustic imaging plus X

    Full text link
    Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area

    Designing a New Tactile Display Technology and its Disability Interactions

    Get PDF
    People with visual impairments have a strong desire for a refreshable tactile interface that can provide immediate access to full page of Braille and tactile graphics. Regrettably, existing devices come at a considerable expense and remain out of reach for many. The exorbitant costs associated with current tactile displays stem from their intricate design and the multitude of components needed for their construction. This underscores the pressing need for technological innovation that can enhance tactile displays, making them more accessible and available to individuals with visual impairments. This research thesis delves into the development of a novel tactile display technology known as Tacilia. This technology's necessity and prerequisites are informed by in-depth qualitative engagements with students who have visual impairments, alongside a systematic analysis of the prevailing architectures underpinning existing tactile display technologies. The evolution of Tacilia unfolds through iterative processes encompassing conceptualisation, prototyping, and evaluation. With Tacilia, three distinct products and interactive experiences are explored, empowering individuals to manually draw tactile graphics, generate digitally designed media through printing, and display these creations on a dynamic pin array display. This innovation underscores Tacilia's capability to streamline the creation of refreshable tactile displays, rendering them more fitting, usable, and economically viable for people with visual impairments

    Ultrasound Guidance in Perioperative Care

    Get PDF

    Development and Validation of Mechatronic Systems for Image-Guided Needle Interventions and Point-of-Care Breast Cancer Screening with Ultrasound (2D and 3D) and Positron Emission Mammography

    Get PDF
    The successful intervention of breast cancer relies on effective early detection and definitive diagnosis. While conventional screening mammography has substantially reduced breast cancer-related mortalities, substantial challenges persist in women with dense breasts. Additionally, complex interrelated risk factors and healthcare disparities contribute to breast cancer-related inequities, which restrict accessibility, impose cost constraints, and reduce inclusivity to high-quality healthcare. These limitations predominantly stem from the inadequate sensitivity and clinical utility of currently available approaches in increased-risk populations, including those with dense breasts, underserved and vulnerable populations. This PhD dissertation aims to describe the development and validation of alternative, cost-effective, robust, and high-resolution systems for point-of-care (POC) breast cancer screening and image-guided needle interventions. Specifically, 2D and 3D ultrasound (US) and positron emission mammography (PEM) were employed to improve detection, independent of breast density, in conjunction with mechatronic and automated approaches for accurate image acquisition and precise interventional workflow. First, a mechatronic guidance system for US-guided biopsy under high-resolution PEM localization was developed to improve spatial sampling of early-stage breast cancers. Validation and phantom studies showed accurate needle positioning and 3D spatial sampling under simulated PEM localization. Subsequently, a whole-breast spatially-tracked 3DUS system for point-of-care screening was developed, optimized, and validated within a clinically-relevant workspace and healthy volunteer studies. To improve robust image acquisition and adaptability to diverse patient populations, an alternative, cost-effective, portable, and patient-dedicated 3D automated breast (AB) US system for point-of-care screening was developed. Validation showed accurate geometric reconstruction, feasible clinical workflow, and proof-of-concept utility across healthy volunteers and acquisition conditions. Lastly, an orthogonal acquisition and 3D complementary breast (CB) US generation approach were described and experimentally validated to improve spatial resolution uniformity by recovering poor out-of-plane resolution. These systems developed and described throughout this dissertation show promise as alternative, cost-effective, robust, and high-resolution approaches for improving early detection and definitive diagnosis. Consequently, these contributions may advance breast cancer-related equities and improve outcomes in increased-risk populations and limited-resource settings

    Augmented reality (AR) for surgical robotic and autonomous systems: State of the art, challenges, and solutions

    Get PDF
    Despite the substantial progress achieved in the development and integration of augmented reality (AR) in surgical robotic and autonomous systems (RAS), the center of focus in most devices remains on improving end-effector dexterity and precision, as well as improved access to minimally invasive surgeries. This paper aims to provide a systematic review of different types of state-of-the-art surgical robotic platforms while identifying areas for technological improvement. We associate specific control features, such as haptic feedback, sensory stimuli, and human-robot collaboration, with AR technology to perform complex surgical interventions for increased user perception of the augmented world. Current researchers in the field have, for long, faced innumerable issues with low accuracy in tool placement around complex trajectories, pose estimation, and difficulty in depth perception during two-dimensional medical imaging. A number of robots described in this review, such as Novarad and SpineAssist, are analyzed in terms of their hardware features, computer vision systems (such as deep learning algorithms), and the clinical relevance of the literature. We attempt to outline the shortcomings in current optimization algorithms for surgical robots (such as YOLO and LTSM) whilst providing mitigating solutions to internal tool-to-organ collision detection and image reconstruction. The accuracy of results in robot end-effector collisions and reduced occlusion remain promising within the scope of our research, validating the propositions made for the surgical clearance of ever-expanding AR technology in the future

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF
    • …
    corecore