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ABSTRACT

A Low-Cost Camera-based Transducer Tracking System for Freehand

Three-Dimensional Ultrasound Imaging

Mohammad Baba

Freehand three-dimensional ultrasound (3D US) imaging is commonly used for

clinical diagnosis and therapy monitoring. In this technique, accurate tracking of

the US transducer is a crucial requirement to develop high-quality 3D US volumes.

However, current methods for transducer tracking are generally expensive and in-

convenient. This thesis presents a low-cost camera-based system for tracking the

US transducer with six degrees of freedom (DoF). In this system, two orthogonal

cameras with non-overlapped views are mounted on the US transducer. During US

scanning, the two cameras are employed to track artificial features attached to the

skin of the patient. A 3D surface map is constructed based on the tracked features

and the 3D poses of each camera with respect to the skin are extracted separately.

The estimated poses of the two cameras are spatially combined to provide accurate

and robust pose estimation of the US transducer. In particular, the fusion of the

estimated poses by the two cameras is performed using Kalman filtering based tech-

nique, which is a popular optimization technique in motion guidance and tracking.

The camera-based tracking of the US transducer has been applied to synthesize

freehand 3D US volumes. The performance of the proposed system is evaluated by

performing in-vitro 3D US imaging experiments and quantifying the synthesized US

volumes. The results demonstrate that two points in the 3D US volume separated

by a distance of 10 mm can be reconstructed with an average error of 0.35 mm and

a 3D volume of a cylinder can be estimated within an error of 3.8%.
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Chapter 1

Introduction

1.1 Motivation

Ultrasound (US) imaging is a cost-effective diagnostic imaging technique that utilizes

the non-invasive US waves to see internal body structures. This medical imaging

modality is widely useful in various diagnostic and therapeutic procedures. Conven-

tional US systems are based on linear array transducers that are able to acquire a

sequence of two-dimensional (2D) images of the three-dimensional (3D) anatomical

body structures. This has limited the ability of these systems to efficiently visualize

the scanned anatomy since it requires the clinician to mentally interpret the 3D tis-

sue based on the acquired 2D images. However, 3D US systems have been proposed

to improve the imaging capabilities of US and enable new capabilities that are not

attainable using the conventional 2D US systems [1].

Nowadays, there are highly advanced US machines that employ complex 2D

phased array transducers to generate high quality US volumes varying with time.

However, the use of such machines has been limited since they are very expensive

and hard to manufacture and operate [3]. Therefore, researchers and companies

have devoted several efforts to develop techniques that can construct 3D US volumes

utilizing the conventional 2D US machines. One of the most popular approaches
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is the tracked freehand 3D US [4]. In this technique, the operator freely sweeps a

conventional 2D US transducer to acquire a sequence of 2D US images. At the same

time, the 3D position and orientation of the US transducer are tracked and recorded

by a tracking system. Finally, the acquired 2D US images and their recorded position

information are processed to synthesize a 3D US volume.

Among the various techniques that have been proposed to track the 3D motion

of the US transducer in freehand US imaging, the most common approaches include

the electromagnetic tracking [5, 6] and the optical tracking [7, 8]. 3D freehand US

systems based on optical and electromagnetic sensors are able to reconstruct 3D US

volumes within an accuracy of submillimeter in nearly real time. However, they are

costly and inconvenient. Moreover, they suffer some constraints that may diminish

the reliability of their position estimates. For example, electromagnetic trackers

are sensitive to the ferromagnetic metals, and the optical trackers require to keep a

constant line of sight between the cameras and the tracked objects.

These constraints have prompted researchers to introduce cost-effective and

convenient techniques for 3D US volume reconstruction where the trajectory of the

US transducer can be accurately extracted by using the computer vision algorithms.

Several approaches have been proposed in the literature to enable 3D computer

vision-based tracking of the US transducer. Some researchers suggested the use

of one or more stationary cameras to track high-contrast markers affixed on the

transducer or the surgical tool [9, 10]. Similar to the optical tracking systems, these

systems require to keep the line of sight between the cameras and the markers. In

addition, they are subject to patient motion artifacts. Other researchers proposed

tracking systems where the transducer 6-DoF trajectory can be extracted using one

or more cameras mounted on the transducer itself [11, 12, 13]. In these systems,

the mounted cameras estimate the 6-DoF pose of the transducer with respect to the

patient skin surface and consequently address body movements.

In fact, the most design challenging requirement of any camera-based tracking
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system is to produce accurate high quality 3D US volumes compared to those synthe-

sized using optical and electromagnetic tracking systems. Furthermore, the system

should be easy to use and designed with minimal cost. In [14], the authors have

anticipated that the accuracy achieved by a single-camera tracking system will be

improved using two cameras as two independent sources of information. They also

expected that some ambiguities related to camera pose estimation in single-camera

tracking system can be overcome. Nevertheless, the individually estimated poses of

the US transducer using the two cameras have to be combined in an optimized way

to gain the aforementioned benefits of such two-camera configuration.

1.2 Thesis Contribution

In this thesis, a novel low-cost camera-based tracking system is introduced to accu-

rately estimate the 6-DoF trajectory of the US transducer. In particular, the system

estimates the pose of the transducer with respect to the skin of the patient using

two mounted orthogonal cameras.

In terms of reviews of related work, we believe our contribution can be sum-

marized as follows:

• The thesis proposes a novel low-cost camera-based transducer tracking system

for freehand 3D US imaging. The system configuration involves attaching two

orthogonal cameras with non-overlapped fields of view to the US transducer,

which enables accurate estimation of the transducer positions with respect to

the patient’s skin.

• A camera pose estimation algorithm is implemented to extract the camera

position and orientation during the US scanning process by tracking distin-

guished feature points from an artificial skin feature pattern that is attached

to the skin of the patient.
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• An optimal fusion technique based on Kalman filtering is introduced to com-

bine the individual position estimates of the two cameras. The fusion ensures

the robustness and enhances the accuracy of the reconstructed 3D US volumes.

• We have designed and implemented different required calibration procedures

required for the freehand 3D US imaging system. A set of 3D in-vitro US

experiments are performed on agar-based phantoms to validate the system

performance.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 provides background information on 3D US imaging. The chapter

also discusses the different approaches that have been developed to generate

3D US volumes. Finally, the chapter provides a brief introduction into the

camera-based US transducer tracking techniques and the existing efforts in

this domain.

• Chapter 3 discusses the proposed camera-based 6-DoF transducer tracking al-

gorithm. The chapter elaborates on the overall algorithm and then discusses

the implementation details step-by-step focusing on the novel orthogonal cam-

era setup.

• Chapter 4 presents the hardware setup of the proposed system. It also ex-

plains the required calibration procedures, such as the temporal and spatial

calibrations.

• Chapter 5 presents the experimental setups as well as the experimental results

of the camera tracking and the in-vitro 3D US experiments.
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• The thesis concludes by summarizing the proposed work. In addition, it pro-

vides some future research directions in Chapter 6.
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Chapter 2

Preliminaries and Related Work

In this chapter, some background information necessary to understand the remaining

chapters are provided along with some related works. First, preliminary information

about 3D US imaging systems are provided in Section 2.1, and then the different

techniques applied to construct such systems are discussed in Section 2.2. Section

2.3 presents a literature review about the previous studies that addressed the recon-

struction of 3D US systems using computer vision algorithms. Finally, Section 2.4

provides the chapter summary.

2.1 Three-Dimensional Ultrasound

US imaging is one of the commonly used medical imaging modalities. It is routinely

used for various diagnostic and therapeutic procedures, since it is a cost-effective,

non-invasive, portable imaging technique that can generate real-time high-resolution

images of the human tissues. In US imaging, high-frequency sound waves, or US

waves, are transmitted from the US transducer into the body tissue and the echoes

that bounce back are recorded and displayed as an image to the operator. One of the

well-known types of the images that can be formed using the sonographic machines

are the B-Mode images, which are 2D US images that show cross sectional images
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of the human anatomy.

Compared to conventional 2D US which enables the radiologist to visualize

the 3D anatomy using 2D images that should be integrated mentally, the 3D US

[15, 1, 4] allows effective comprehensive screening of the anatomical structures and

hence improves the ability of diagnosis of several diseases in early stages. 3D US

offers several advantages over the conventional 2D US that can be summarized in

the following:

• 3D US imaging reflects the true 3D nature of the anatomies. This is different

from 2D US imaging which requires the radiologist to mentally integrate sev-

eral 2D slices to interpret the 3D anatomy. It worth noting that 2D imaging

modalities might be inefficient and time consuming and may cause erroneous

diagnosis and guidance during interventional procedures [6, 16, 17, 18].

• 3D US systems easily offer the capability to relocate the US transducer at the

exact same location and orientation of previous screenings in the body when

imaging a patient, which is a common practice in the progression of pathology

up in response to therapy [19].

• Using 3D US, the US images can be registered to the skin of the patient [13]

and the visualization of the planes parallel to the skin will be attainable unlike

the 2D US. In addition, 3D US facilitates the registration of the US images

and volumes to the images of other imaging modalities, such as computed

tomography (CT) and magnetic resonance imaging (MRI), which is important

task in image-guided interventions [5].

• 3D US has the capability of accurate volume delineation and measurements

of the scanned lesion which are required in some diagnostic and therapeutic

procedures [20, 21].

• In cancer diagnosis, it has been shown that the extracted features from the
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3D US volumes of the lesion result in a better diagnosis [22, 23].

2.2 Three-Dimensional Ultrasound Approaches

The previously mentioned advantages and capabilities of 3D US imaging as well as

the advancement in the 3D tracking and visualization technologies have encouraged

research investigators and commercial companies to develop several approaches for

3D US imaging. These approaches mainly depend on either the utilization of the

linear arrays (i.e. one-dimensional array), used in the conventional 2D US machines,

to synthesize 3D US volumes using mechanical and freehand scanning, or the use of

dedicated 2D arrays to directly acquire 3D US volumes [4].

The use of the conventional linear arrays to form 3D US images requires the

recording of the 3D position and orientation of each 2D image. On the contrary, 2D

arrays, which are used on the high-cost transducers that are specifically designed

for 3D US imaging, can construct the 3D image from a sequence of transmit/receive

acoustic signals.

In both methods, the construction of the 3D US volumes should be fast, i.e.

real time or near real time, accurate, i.e. the position and orientation should be

accurately detected, user friendly and easy to be integrated with the examination

procedure.

Current 3D US systems are built using one of the following techniques: me-

chanical 3D scanning, 2D transducer array scanning, sensorless freehand scanning

without position sensing and tracked freehand scanning.

2.2.1 Mechanical Three-Dimensional Scanning

Mechanical 3D US systems apply some motorized mechanisms to translate, tilt or

rotate a conventional 2D US transducer with predefined and constrained movement

steps while acquiring the 2D US images [24, 25, 26, 27] as shown in Figure 2.1. These
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images are combined with their predefined positions and orientations to reconstruct

the 3D US volumes in real time by applying some computational algorithms.

Figure 2.1: Demonstration of mechanical 3D US methods. The equal-spacing move-
ment of the transducer is governed by motors. (a) Linear scanning, (b) the US
transducer is tilted, and (c) the transducer is rotated around its axis [1].

This technique employs the conventional 2D US machines and produces accu-

rate 3D US volumes in adequately reasonable time, i.e. real-time or near real-time,

since the scanning trajectory is known beforehand. This makes them the most pop-

ular approach for 3D US systems used in obstetrics and gynecology. However, in

other medical applications such as surgical interventions and disease diagnosis, these

systems are inconvenient to use since they require a bulky transducer housing for

the mechanical motor. Moreover, the controlled movement limits the vision scope

and the flexibility of the system.
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2.2.2 Two-Dimensional Transducer Array

This method does not use the conventional 2D US transducers to construct 3D US

volumes. Instead, it utilizes transducers that consist of 2D phased array. The trans-

mission of the US waves is controlled electronically by sending a broadly diverging

US beam away from the array and then collecting the returned echoes by the 2D ar-

ray. Then, these echos are processed to construct and visualize the pyramid-shaped

3D US volumes [28, 3].

This approach reduces the time needed for volume acquisition and produces

high quality US volumes varying with time. This technique is known as the four-

dimensional US imaging. However, the production of these transducers is a very

expensive and complex process; which makes them difficult to obtain especially for

hospitals in developed countries.

2.2.3 Sensorless Freehand Ultrasound

In Freehand 3D US [4], the user freely moves the US transducer without any con-

straints on the movement. However, the position and orientation of the transducer

should be tracked in order to construct the 3D US volume from the sequence of the

2D images.

Sensorless freehand US techniques do not include tracking sensors to track the

US transducer. The position is rather detected by finding the separations between

consecutive pairs of 2D images using information within the images themselves and

their row radio frequency (RF) signals (i.e. speckle decorrelation and linear regres-

sion) without the need of position sensing [20, 29, 30]. This technique requires no

additional components but the conventional 2D transducers. However, some im-

plementations require access to the row RF signals which is not available in many

commercial US machines, while others require the presence of fully developed speckle

patches which are rare in real tissue.
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This technique produces less accurate 3D volumes compared with those result-

ing from the mechanically constrained scanning, the 2D arrays and even the tracked

freehand US systems. Thus, more improvements need to be done in order to com-

pete these techniques. Furthermore, it suffers from gradually increasing drift since

the bias in position estimate builds up as the US image pairs are iteratively pro-

cessed. Some researchers proposed hybrid systems that use limited information from

a position sensor along with the sensorless freehand systems, in order to enhance

the accuracy of the resulting volumes and correct the accumulated drift [31, 32].

2.2.4 Tracked Freehand Ultrasound

Freehand US can also be achieved by rigidly attaching a position sensor to the US

transducer [33]. The sensor records the position and orientation of the transducer

during the scanning procedure, and then the 3D volumes are constructed by com-

bining the sequence of the 2D images along with the position information. Different

types of sensors are exploited to track the US transducer, most commonly electro-

magnetic [5, 6, 34], and optical [7, 8, 18] sensors.

An electromagnetic tracking system consists of an electromagnetic transmitter

and receiver. The transmitter conveys a time-varying 3D magnetic field throughout

the scanned volume that gets picked up by some coils attached to the transducer

which form the receivers. The data is then processed to determine the position and

orientation of the US transducer. These sensors do need to keep metal, particularly

ferromagnetic metal, out of the area which is very difficult to attain in operating

rooms. Many commercial electromagnetic sensors are used in US localization such

as the Bird sensor from Ascension Technology Corporation (Burlington, Vermont,

USA), the Fastrak sensor from Polhemus (Colchester, Vermont, USA), and the Au-

rora from Northern Digital (Waterloo, Ontario, Canada).

In optical tracking systems, a passive or active target is attached to the trans-

ducer and tracked by two or more calibrated cameras. A passive target may be
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formed of three or more matt spheres at known relative positions on a small frame.

An active target may consist of several infrared light-emitting diodes (LEDs) that

are excited in a known sequence while the infrared cameras are capturing the re-

sulting signals. The major drawback of these sensors is the need to maintain an

uninterrupted line of sight between the cameras and the tracked objects attached

to the transducer, which is inconvenient to the operators. Many commercial optical

tracking systems, such as Polaris and Optotrak from Northern Digital (Waterloo,

Ontario, Canada), have been used by several research groups in developing Freehand

3D US as well as image-guided surgeries and ultrasound-guided needle placement

procedures.

In general, the tracked freehand 3D US techniques are low-cost, flexible and

easy to use but their reconstructed 3D US volumes have less quality compared to

those resulting from the constrained 3D US and the 2D array systems. Moreover,

these techniques need a spatial calibration procedure [35, 36] to find the rigid-body

geometric transformation between the coordination system of position-sensing equip-

ment and the US coordination system. In addition, a temporal calibration technique

that ensures the synchronization of the position information with the corresponding

2D US images is needed. Figure 2.2 illustrates the procedure of tracked freehand

3D US.
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Figure 2.2: Demonstration of tracked freehand 3D US technique (Images are from
[2]).

2.3 Camera-based Transducer Localization

Although tracked freehand US systems based on optical and electromagnetic sensors

are able to provide sub-millimeter accuracy in nearly real time, they are usually

expensive and bulky, and do not address the motion of the patient body. Moreover,

they require special conditions to ensure the correctness of their pose estimates,

i.e. the line of sight for optical sensors and the absence of ferromagnetic metals for

electromagnetic sensors. These limitations have encouraged researchers to develop

cost-effective and more convenient techniques for 3D US volume reconstruction,

in which the well-developed advanced computer vision algorithms are employed to

accurately locate the US transducer. The design challenge of these systems is the

need to maintain similar reconstruction accuracy levels compared to those obtained

using the optical and electromagnetic tracking approaches.

Some researchers have developed systems [9, 37] in which high-contrast mark-

ers attached to the transducer or the surgical tool are tracked by a single fixed
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camera. These systems do not address the patient’s motion since the positions of

the US transducer are determined with respect to the stationary camera coordinate

system which is independent of the patient’s body.

The works of [38] and [10] proposed different platforms that enable the spa-

tial registration of the US transducer to the patient’s body. In these platforms,

an external common optical tracker performs simultaneous localization of the US

transducer as well as the scanned anatomy, and hence overcomes the problem of the

patient’s motion. However, since the cameras are stationary, it entails to keep an

uninterrupted line of sight between the tracker and both the scanned area and the

transducer during the whole scanning process. This results in more constrained and

less convenient systems than those only track the transducer.

Other research groups have investigated the possibility of using transducer-

mounted sensors, i.e. cameras and some auxiliary inertial measurements sensors.

In these systems, one camera or more are mounted on the transducer rather than

tracking it remotely. These systems are less constrained and can easily handle rigid

body movements since they estimate the transducer poses with respect to the skin

surface.

For example, [39] used a mounted camera to track a light pattern projected

onto the patient’s skin during US scanning in order to find out the tilt angle of

the transducer against the skin. The light pattern is generated by lighting sources

mounted to the transducer as well. In [11], a tracking system is introduced to

generate panorama US volumes. In this system, a special strip with high-contrast

markers is attached to the skin surface and tracked by the transducer-mounted

camera. However, the transducer has to be moved alongside the strip by linear

predetermined paths.

The work of [40] presents a tracking technique developed using the visual

Simultaneous Localization and Mapping (SLAM) method. The mounted camera
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tracks an artificial pattern with rich features affixed to the skin to determine the 6-

DoF location of the transducer with respect to the skin surface. The same technique

with some improvements was used in [12] in order to track the transducer using

natural skin features captured by the camera while the transducer is moving. The

images of the skin surface should be processed and enhanced to facilitate skin feature

extraction.

Other works have proposed tracking platforms where two cameras are mounted

to the transducer. [13] describes a tracking method where stereo vision is employed

to spatially register the transducer to the skin surface based on stereo disparity.

Since the cameras are mounted to the transducer at a distance close to the skin, big

disparities calculations are predicted in the stereo setup, which are computationally

intractable. [41] used the two mounted cameras to estimate needle locations in US

guided percutaneous procedures.

Some investigators have proposed tracking systems that utilize optical trackers

similar to those used in optical mice mounted on the transducer at small height

from the skin [42, 43]. Due to this small height, these trackers provide estimations

of 2-DoF transducer translation only. Consequently, these systems are required

to be supplemented by some inertial measurements units, such as gyroscopes and

accelerometers, to determine the remaining DoF. These systems are inconvenient,

due to the fact that the optical trackers should remains in contact with the skin

throughout the scanning process.

Lastly, it is noteworthy that there have been several efforts, similar to those

presented for tracking the US transducer, to develop tracking techniques for en-

doscopes inside the patient’s body. These techniques directly track the endoscope

using features extracted from the surface texture of the organ in endoscopic images

[44, 45, 46, 47].
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2.4 Summary

In this chapter, the concept of 3D US and its benefits over the conventional 2D US

were presented. The different techniques used to implement such imaging modality

were explained with some related works. Finally, related work in camera-based US

transducer localization were reviewed.
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Chapter 3

Ultrasound Transducer Tracking

In this chapter, our camera-based US transducer tracking technique is presented.

The chapter starts by giving a brief introduction about the proposed methodology in

Section 3.1. In Section 3.2, the camera tracking algorithm is described and discussed

in detail. Section 3.3 describes the two-camera fusion technique. Finally, Section

3.4 summarizes the chapter.

3.1 Overview of the Proposed System

In this thesis, our goal is to propose a novel low-cost accurate freehand 3D US

system. This is achieved by accurately extracting the 6-DoF trajectory of the freely

moved US transducer. In the proposed system, the tracking of the US transducer is

performed using two orthogonal cameras that are attached to the transducer. As the

US transducer is moved to acquire a sequence of US images, the attached cameras

are capturing images of the skin features. Next, the captured cameras images are

processed using the structure from motion algorithm in order to determine the poses

of the cameras. Thereafter, these poses are employed to compute the poses of the

US images, which are subsequently used to reconstruct the 3D US volumes.

The main steps of proposed freehand 3D US imaging system are illustrated in
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Figure 3.1 and summarized as follows:

1. The videos obtained from the 2D US machine, camera1, and camera2 simul-

taneously are sampled based on the frame rates provided by the US machine

and the cameras. The resulting sequences of images are then synchronized

using the temporal calibration (Section 4.4).

2. The synchronized images of the two cameras are processed using the camera

tracking algorithm, which is discussed in details in Section 3.2, to extract the

6-DoF up-to-scale cameras poses.

3. The scale calibration technique presented in Section 4.3 is then employed to

compute the scaling factors that are used to scale those up-to-scale poses to

the metric units.

4. The estimated metric poses of the two cameras are then fused to generate more

robust common pose estimates (Section 3.3). The fusion is based on the rigid-

body transformation between the camera coordinates, which is calculated by

the stereo calibration (Section 4.5).

5. The combined pose estimates are transformed to the US image coordinates

by a rigid-body transformation. This transformation is computed using the

spatial US calibration method presented in Section 4.6.

6. Finally, the localized US images are used to reconstruct the 3D US volume.

The reconstructed volume is visualized using the Stradwin freehand 3D US

calibration, acquisition, measurement, and visualization tool [48].
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Figure 3.1: Illustration of the proposed freehand 3D US system.
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3.2 Proposed Camera Tracking Algorithm

In the proposed freehand 3D US system, the transducer trajectory is determined

based on the position information extracted from the tracking of the two cam-

eras mounted on the transducer. For each camera, the simultaneous pose tracking

and environment mapping are performed using the so-called structure from mo-

tion or Visual Simultaneous Localization and Mapping (SLAM) algorithms, such as

monoSLAM [49] and Bundler [50]. The goal of these algorithms is to reconstruct the

3D scene geometry from a sequence of 2D images of this scene captured by a camera

from different positions and orientations. Each 2D camera image contains a part

of the 3D scene projected in its 2D plane. However, these images may have some

overlapped areas that can be identified and matched throughout the whole captured

image set. This enables the 3D reconstruction of the captured scene by remapping

the projected parts to their original 3D locations. It also allows the estimation of the

3D position and orientation of the camera when each of the 2D images was taken.

In our system, each camera captures a sequence of images of a random binary

pattern marker that is affixed to the skin of the patient in the scan area. The system

extracts a set of distinguished artificial skin feature points from each image. These

feature points are analyzed and tracked through the overlapped images to estimate

the relative motion of the camera. Consequently, the proposed algorithm obtains

the relative up-to-scale position and orientation of the camera with respect to the

skin, as well as a 3D map of the patient’s skin. Figure 3.2 depicts the flowchart of

the proposed algorithm.

Our implementation of the camera tracking algorithm has been inspired from

the implementation documented in chapter 4 in [51]. However, our algorithm uses

SURF feature detector which is considered more robust than the PyramidFast de-

tector they used. Also, the matching of feature points extracted in each image is

performed against the preceding nine images instead to the whole image set. This

reduces the required computations while keeping the accuracy of the tracking results.
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Moreover, the two-frame baseline initialization in our system is more constrained

which results in a more robust pose estimates. This is important since the base 3D

skin map that formed by these two initial images is considered the cornerstone for

the mapping and tracking of the following images.

3.2.1 Feature Extraction and Matching

One of the substantial requirements for an accurate camera tracking algorithm is

the ability to precisely identify a set of distinguished features, that are easily tracked

between the consecutive images. The detection of these features can be achieved

using a computer vision feature detection algorithm such as Scale-Invariant Feature

Transform (SIFT) [52], Speeded Up Robust Features (SURF) [53], Oriented FAST

and Rotated BRIEF (ORB) [54], etc.

The proposed system extracts local feature keypoints using SURF method

which is considered fast and robust against different image transformations [53].

The performance of the feature extraction as well as the overall system was tested

against the three different algorithms: SIFT, SURF, and ORB. However, SURF

performed faster than SIFT but slower than ORB, and it extracted less but adequate

keypoints than ORB, which made it suitable for our system since it reduces both

the time complexity and memory complexity of feature extraction and matching.

In order to find the feature correspondences between a pair of camera im-

ages, each extracted feature keypoint is described using SURF method by a highly

distinctive descriptor vector of 128 elements that reflects the neighborhood of the

extracted keypoint. Brute-force descriptor matcher is then used to match keypoints

between the two images based on the computation of the Euclidean norm distance

(L2 norm) between the descriptor vectors of these keypoints.

Nevertheless, the extracted keypoints matches may contain some outliers that

can diminish the system accuracy. In order to discard these outliers, the system

initially ensures one-to-one matching, i.e. each keypoint from the first image has
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22



only one correspondent in the second image. In addition, the matches are filtered by

applying the RANdom SAmple Consensus (RANSAC) scheme [55] with the eight-

point algorithm [56] which is used to find the fundamental matrix F that relates the

two camera images in the epipolar geometry. In RANSAC, several random samples

composed of eight keypoint matches are used to compute different hypotheses of

the fundamental matrix. Each of these hypotheses is ranked by the number of

keypoint matches that fit with the computed matrix within a threshold. Hence,

any feature correspondence will be considered as an outlier and eliminated if it

is not consistent with the highest ranked epipolar scene. Figure 3.3 represents an

example of two camera images with the lines between them representing the keypoint

correspondences after applying the filtering.

Figure 3.3: An example of feature matching between two images.

Finally, it is worth mentioning that the extracted feature points in each camera

image are only matched to those extracted in the previous nine images not to the

whole captured images [40]. This is due the fact that the amount of overlapped fields

of view between the images decreases, as the distance between them increases. The

window size of 10 was chosen empirically. The algorithm was tested using different

window sizes (5, 10, 20, no window). A window size of 10 reduces the computation

time, while maintaining enough information that is able to produce accurate pose

estimates.
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3.2.2 Two-Frame Baseline Initialization

Visual SLAM algorithm is initialized by defining a baseline that consists of two over-

lapped camera frames [56]. In particular, this baseline is established by computing

the fundamental matrix and hence the relative motion between the camera poses

of the two images using the eight-point algorithm along with RANSAC scheme. If

the matched feature points in the two images are represented by the the homoge-

neous coordinates q1(x, y, 1) and q2(x
′, y′, 1), respectively and their corresponding 3D

world point is represented by the homogeneous coordinates Q(X, Y, Z, 1) as shown

in Figure 3.4. Equations 3.1-3.3 represent the relations between q1, q2, and Q.

Figure 3.4: Epipolar geometry between two camera images. C1 and C2 are the
camera’s centers at image 1 and image 2, respectively.

qT
2
Fq1 = 0 (3.1)

q1 = P1Q (3.2)
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q2 = P2Q (3.3)

where P1 and P2 are the 3-by-4 camera projection matrices that map the 3D points

in the world coordinates to the corresponding 2D points in image 1 and image 2,

respectively.

Applying the eight-point algorithm within RANSAC scheme, the best fun-

damental matrix estimation can be found using the feature point correspondences

between the two images. The essential matrix E between the two images can be

found using equation 3.4:

F = K−TEK (3.4)

where K is the intrinsic camera matrix that can be found using the intrinsic camera

calibration explained in Section 4.5, and −T denotes the transpose of the inverse.

If it is assumed that P1 = K[I|0] which means that the camera pose at the first

image does not have any rotation or translation, and P2 = K[R|t] which means

that camera pose at the second image has been rotated and translated by R and

t with respect to that at the first image, the rotation R and translation t can be

computed using the Singular Value Decomposition (SVD) of the essential matrix E,

since E = [t]xR, where [t]x denotes the skew symmetric matrix of t = [tx, ty, tz]
T .

[t]x =











0 −tz ty

tz 0 −tx

−ty tx 0











(3.5)

Please note that the full description of the previous mathematical equations

can be found in [56].

Using the computed relative pose between the initial two images, an initial

3D skin map can be constructed. In particular, each inlier feature point match
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between the two images are used to compute a corresponding 3D skin map point

through triangulation [56]. The skin map point is represented by 3D vector for its

3D position, as well as the feature points in the images that are mapped to this 3D

point.

Finally, it is important to notice that the initial constructed 3D skin map is

the backbone of the tracking algorithm, since it will be used to estimate the camera

poses for the remaining images. Therefore, our implementation includes an extra

step to ensure the best quality of the constructed skin map. The fundamental matrix

F and the 3D skin map are computed for each possible image pair within the first

ten images. The first pair that provides 100% valid 3D skin map points is used as

the baseline of the reconstruction algorithm. Kindly note that a 3D map point is

considered valid, if its z-component is bigger than the z-component of the camera

center when the two images were captured, i.e. the triangulated 3D point is in front

of the cameras.

Optimization of the estimated relative camera poses as well as the set of 3D

skin map points are performed by bundle adjustment. In bundle adjustment, the

sum of the re-projection errors is minimized. More explanation about bundle ad-

justment will be presented shortly in Section 3.2.5.

3.2.3 Camera Pose Estimation

Using the resulting 3D map points from the initialization phase, the pose of the

subsequent images can be estimated. As mentioned in Section 3.2.1, the feature

points of each image are matched to those extracted in the previous nine images, and

consequently they can be matched to the 3D map points that have been triangulated

using those feature points. Thus, a 2D-to-3D point mapping is established between

the new camera image and the reconstructed 3D skin map.

Using these 2D-to-3D correspondences, the current camera pose (R, t) can be

robustly computed using an efficient Perspective-n-Point (PnP) algorithm along with
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the RANSAC scheme [57], considering the computed camera pose at the previous

image to be the initial guess for the algorithm. This assumption is valid, since

the spacing between the consecutive poses is very small due to the high camera

acquisition frame rate.

3.2.4 Map Extension

In order to strengthen the reconstructed 3D skin map and enable the tracking of

camera poses of images far from those formed the initial baseline, the skin map

should be extended by adding new 3D map points. After the camera pose of the

current image is estimated, the algorithm performs a search process through the

feature point correspondences between the current image and the previous nine

images. If the matched feature point in one of the previous images has already been

used in the computation of a 3D map point, the map point description is updated

by adding the feature point in the current image to the list of feature points from

which the 3D map point has been formed. This will strengthen the 3D skin map

points and keep track of them throughout the images.

However, if the feature point correspondences have never been used in the

computation of any existing skin map point, a new 3D point is computed by the

feature point pair via triangulation [56]. The algorithm tests the new triangulated

3D point in order to preserve the quality of the skin map and the pose estimates.

Any 3D point should be valid, i.e. located in front of the camera, and the re-

projection of it onto the image plane using the estimated camera pose should be

within a threshold distance from the original feature point in that image.

3.2.5 Bundle Adjustment

One important component of the tracking and mapping algorithm is refining the

estimated camera poses and the reconstructed 3D skin map which is performed by
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Bundle Adjustment (BA). In bundle adjustment, the system works on minimizing

the sum of the re-projection errors Ereproj(X,P ) [56]:

Ereproj(X,P ) =

n
∑

i=1

∑

j

D(xij , PiXj) (3.6)

where i represents the image’s index and j represents the 3D map point’s index.

Pi = K[Ri|ti] denotes the camera projection matrix when image i is captured. Xj

represents the 3D position of the map points while xij denotes the 2D originating

feature point in image i which relates to Xj . The function D computes the geometric

image distance between the original 2D feature point xij and the re-projected 2D

point x̂ij = PiXj using the estimated camera pose Pi. The distance function could

be defined as the Euclidean norm distance (L2 norm) or the L1 norm depending on

the noise properties of the feature points localization [14].

In the proposed algorithm, the open-source Simple Sparse Bundle Adjustment

(SSBA) library [58] has been used to refine the camera pose estimates and the 3D

skin map. SSBA implements the sparse Levenberg-Marquardt optimization proce-

dure [59] to accomplish the non-linear minimization task.

Finally, the refined skin map and the camera poses are used to determine the

camera poses of the subsequent images according to the steps explained in the last

three sections (Sections 3.2.3 - 3.2.5), until all camera images are processed. Once

the poses are estimated, these poses are anticipated to construct a smooth camera

trajectory without any irregularities or discontinuities. However, some odd poses

may arise due to noise or poor quality images. These poses are replaced by more

aligned poses computed through interpolation from the surrounding good poses.

It is also useful to bear in mind that the 3D skin map and the camera positions

are reconstructed up to a scaling factor. Therefore, scale calibration is required in

order to compute the true metric dimensions of the reconstructed scene. This task
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can be performed by introducing a certain shape such as a square with known dimen-

sions in the scan region to be used as a reference for the scaling. More explanation

about scale calibration will be provided in Section 4.3.

3.3 Two-Camera Fusion

In general, the structure from motion algorithms that use single camera, i.e. the

monocular approaches, such as the algorithm described in the previous section have

some theoretical and practical limitations when used alone to reconstruct the 3D

structure [60]. One of these limitations is the existence of the inherent ambiguities

in pose estimation that only depends on the camera images. For example, the

rotation around one image axis may be interpreted as translation along the other

axis, especially, in case of small distances between the camera and the skin surface

like those exist in our system setup.

Therefore, some researchers introduced the use of stereo-based systems where

the pose information from multiple cameras can be fused in order to overcome

those limitations. In fact, stereo-based systems not only provide more robust pose

estimations but also offer extended fields of view.

There are two approaches that can be implemented using a stereo camera setup

to estimate the camera trajectory. In the first approach, the conventional stereo

camera setup that utilizes the stereo disparity is used. This approach has been

employed by [13] to register of the US transducer with the skin surface. However,

big disparities are predicted in the stereo setup, since the cameras are close to the

skin map. These big disparities are undesirable since they diminish the accuracy.

The second approach is built on the use of two camera with non-overlapping

fields of view [61, 62]. In this approach, monocular pose estimation is performed

on the set of images of each camera individually. Then, these poses are fused to

provide unified robust pose estimates using the rigid-body spatial transformation
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between the coordinate systems of the two cameras. By using this approach, the

pose estimation’s ambiguities in the single-camera systems become tractable.

In our implementation, two cameras have been mounted to the transducer in

such a way they face the skin surface, while one of them is rotated by 90 degrees

from the other. The single-camera tracking algorithm represented in Section 3.2 is

used to estimate the camera poses of each camera separately. The estimated relative

camera poses of the second camera are transformed to the coordinate system of the

first camera using the rigid-body spatial transformation between the two cameras

(T cam1

cam2
). The computation of this transformation will be discussed later in Section

4.5. Finally, the transformed poses from the second camera and those computed

for the first camera are combined. This information fusion of the two independent

cameras aims to compute more robust pose estimates and hence more accurate 3D

US volumes.

The fusion of the estimated poses by the two cameras can be performed using

several methods. The simplest one is to compute the spatial average of the two pose

estimates. This method is computationally inexpensive and provide better and finer

pose estimates with less noise. However, the performance of this fusion technique

extremely declines in the presence of highly noisy measurements or incorrect outlier

estimates. Therefore, a robust fusion technique is required where the two camera

pose estimates can be combined effectively to gain the desired benefits of the fusion.

Kalman filter is an optimal estimator that is commonly used in Radar and

GPS tracking and navigation and robot localization applications [63]. Kalman fil-

ters aim to provide an optimal estimation of the system state variables from noisy

measurements of several sensors. In the area of freehand 3D US imaging, the authors

of [32] have used unscented Kalman filter to fuse the US transducer pose estimates

of an electromagnetic sensor with the sensorless speckle-based pose estimates. The

results revealed the significant improvement of the reconstruction accuracy when

the fusion framework was applied.
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In the proposed system, an optimized fusion technique has been developed

based on Kalman filtering. The filter model and implementation were inspired by

[64]. In the proposed technique, the system is modeled with the equations 3.7-3.9:

xk = [tx, ty, tz, γ, β, α] (3.7)

xk = Axk−1 +Buk + wk (3.8)

zk = Cxk−1 + vk (3.9)

where xk represents the current system state variable which is the current camera

pose estimate composed of three translation components: tx, ty, and tz and three

rotation components: γ, β, and α associated with the x, y, and z axes, respectively.

Ak is the state transition model which represents the relation between the consecu-

tive pose estimates and assumed to equal 1. uk is a system control signal which can

be defined as the transnational and rotational velocities in the proposed platform.

zk = [z1k, z2k] are the individual camera pose estimates of the two cameras and C

is the measurement model matrix which is equal to [1, 1]T for each component of

the estimated pose since we have two measurements. Finally, wk and vk denote

the current process and measurement noises, respectively. To compute the optimal

estimation x̂k of the kth camera pose estimate xk, Kalman filter first predicts x̂k de-

pending on the previous computed camera pose estimate x̂k−1 using the predicting

equations 3.10-3.11, and then it updates x̂k based on the noisy measurements of the

two camera zk using the updating equations 3.12-3.14.

Predict:

x̂k = Ax̂k−1 +Buk (3.10)

Pk = APk−1A
T +Q (3.11)

Update:

Gk = PkC
T (CPkC

T +R)−1 (3.12)
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x̂k = x̂k +Gk(zk − Cx̂k) (3.13)

Pk = (I −GkC)Pk (3.14)

where Pk expresses the kth prediction error, while Q and R denote the process

and measurement noise variances, respectively. Gk is the kth gain that represents

the trad-off between the current predicted pose from the previous pose x̂k and the

current individual measured poses of the two cameras zk. This gain depends on the

prediction error and the noises associated with the process and the measurements.

Using the proposed Kalman filtering based fusion technique, the two sets of

pose estimates by the two camera can be combined efficiently to produce robust and

smooth estimation of the transducer trajectory, which also leads to a better 3D US

reconstruction.

3.4 Summary

In this chapter, a brief description of the proposed methodology was provided. The

proposed up-to-scale structure from motion algorithm was explained, and the imple-

mentation of various stages was discussed. Special attention was given to the stereo

fusion approach, where the resulting individual pose estimates form each camera

were combined to form one robust common trajectory estimation.
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Chapter 4

System Design and Calibration

In this chapter, we will present the hardware design of our proposed freehand 3D

US system and the required calibration procedures. First, the design of the US

transducer housing is demonstrated in Section 4.1. Then, the design of the artificial

skin feature marker is discussed in Section 4.2. In Section 4.3, the scale calibration

method is discussed. The temporal calibration is presented in Section 4.4. Sec-

tion 4.5 presents some details about the intrinsic camera calibration as well as the

stereo calibration. In Section 4.6, the spatial US calibration procedure, is described.

Finally, Section 4.7 summarizes the chapter.

4.1 Transducer and Camera Housing

In the proposed freehand 3D US system, the LOGIQ e Portable US machine (General

Electric Healthcare, Little Chalfont, United Kingdom) is used with a 12L-RS linear

array transducer. The transducer operates with imaging frequency range of 5.0 −

13.0 MHz. Two low-cost USB Macally IceCam2 web cameras are mounted to the

transducer facing the skin surface, while one of them is rotated by 90 degrees from

the other one.

Figure 4.1 illustrates the proposed system configuration. The cameras are
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rigidly attached to the US transducer using a plastic housing. The housing was

designed with AutoCAD based on the component dimensions and spacing and then

printed using a 3D printer. The housing was designed to firmly carry the two cameras

and the transducer, so that the spatial transformations between them remain fixed.

The focus of the cameras were adjusted to obtain clear images of the skin

feature from a distance of approximately 50 mm. The image resolution of the

cameras is 640 × 480. The cameras’ lenses were placed around 57.5 mm above the

transducer aperture to allow wider control the US transducer motion. Additionally,

this reduces the effect of local surface deformation which is caused by the transducer

pressure.

Figure 4.1: The proposed system configuration.
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4.2 Marker Design

As demonstrated in the previous chapter, the ability to provide accurate camera

pose estimates through the camera tracking algorithm (Section 3.2) highly relies on

the availability of easily detectable and traceable skin features. However, robust

natural skin features are rare and difficult to detect; especially in skin areas with

homogeneous texture. In addition, when the skin surface is covered with the US gel,

the natural features become less observable and enhancement using image processing

techniques is required [14]. Instead, artificial skin features are used in our system.

In particular, a random binary pattern marker with rich features as illustrated in

Figure 4.2 is affixed to the skin surface to form such artificial skin features.

Figure 4.2: Artificial skin feature marker.

It is important to notice that the marker design is not restricted. Hence, the

marker could be formed by any random pattern with rich feature. For example, the

pattern used in our experiments is from [65]. The size of the marker can vary based

on the desired scan area.
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4.3 Scale Calibration

The proposed camera tracking algorithm in Section 3.2 provides up-to-scale recon-

struction of the 3D skin map and the camera pose estimates. In order to find the

scaling factor that enables the retrieval of the metric dimensions of the reconstructed

scene, scale calibration is needed. This task is performed by adding a certain object

with known dimensions to the scan region. In our system, small squares with known

length are added to the artificial skin feature marker as shown in Figure 4.3. The

addition of these squares can be easily done with any image editing tool.

Figure 4.3: Squares with known length are embedded into the artificial skin feature
marker for scale calibration.

Once the tracking algorithm finishes the up-to-scale reconstruction, four cor-

ners of the square in images obtained from both cameras, in which the square is

visible are selected. Note that the black square was enclosed by white frame to

facilitate the corner detection. Multiple copies of the square were distributed all

over the marker so the user can move the transducer on the scan area without any

constraints.

The selected corners are triangulated based on the up-to-scale poses in order

to generate four 3D points that form a square in the 3D space. The length of the

reconstructed up-to-scale square is compared to the known metric length and a scale

factor is computed. Finally, the resulted camera poses and 3D skin map points are

scaled to true metric dimensions.
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4.4 Temporal Calibration

In freehand 3D US systems, the synchronization between the US images and the

position tracker’s readings is indispensable [4]. In the proposed system, the acquisi-

tion of the US images and the cameras’ images are performed on different machines.

The introduced delays by the used hardware or due to the communication between

them are different and can lead to wrong temporal mapping, even if the US machine

and the cameras were initiated at the same time. Therefore, a process known by

Temporal Calibration is needed to ensure the correct link between the US images

and the position information provided by the cameras.

In the proposed system, the US machine and the two cameras are configured

to capture images at the same fame rate, so the time differences between consecutive

frames are equal. The next step is to determine a common starting point which is

done during the scanning process. The user should shake the transducer housing

that contains the US transducer and the two cameras quickly in the axial direction,

i.e. as if she/he is pressing on the skin of the patient. This rapid shake results in a

big change in the captured images.

The system computes the sum of the pixel-wise intensity differences between

image i and image i − 5 for i = 6, 7, ..., N/2 where N is the total number of im-

ages captured by the US machine or the cameras. Our methodology then searches

through the computed differences to determine the shaking moment. In the US

images, the shaking moment is defined by the image that has the biggest intensity

difference. In the other hand, the shaking moment in the camera images is defined

by the image that has the least intensity difference. This is due to the fact that

moving the transducer in the lateral direction changes the intensity values of every

pixel in the US image, which leads to big intensity difference. In contrast, the shak-

ing corresponds to a motion in the camera along the z direction where the camera

get closer to the skin surface. This does not change the intensity of the pixels since

the camera is capturing zoomed version of the same scene.
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Figure 4.4 illustrates the sum of the pixel-wise intensity difference between

the images of the first camera, the images of the second camera, and those of the

US machine, respectively. Finally, the system synchronizes the images of the US

machines with those of the two cameras starting from the shaking moment.
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Figure 4.4: An example of the temporal calibration procedure results. (a), (b), and
(c) depict the sum of intensity differences between the images captured by the first
camera, the second camera, and the US machine, respectively. The small red circles
denote the shaking moments at each image sequence.

4.5 Camera Calibration

This section describes the procedures used in order to estimate the intrinsic matrices

of the two cameras and the spatial rigid-body transformation between the coordi-

nates of the two cameras. These tasks were fulfilled using the open-source Matlab
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camera calibration toolbox [66].

4.5.1 Intrinsic Calibration

The camera calibration is performed to determine the intrinsic camera parameters

including the focal lengths (i.e., fx and fy), the principle point coordinate (cx, cy)

and the radial lens distortion coefficients. The estimation of these parameters is

indispensable as the proposed camera tracking algorithm (Section 3.2) assumes that

the camera is calibrated. In particular, the camera projection matrix P = K[R|t]

is composed of the intrinsic camera matrix K and the camera position information:

rotation R and translation t. K is defined as follows:

K =











fx 0 cx

0 fy cy

0 0 1











(4.1)

In the calibration procedure, at least 20 images of a checkerboard pattern,

illustrated in Figure 4.5, are captured from various positions and orientations. These

images are then processed to compute the intrinsic parameters. Note that this

procedure was performed for both cameras since these intrinsic parameters differ

from one camera to another.

Figure 4.5: The checkerboard pattern used for the camera calibration. Each square
has the size of 1.27× 1.27 mm.
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4.5.2 Stereo Calibration

The goal of the stereo calibration is to determine T cam1

cam2
, the transformation from the

second camera coordinates to the first camera coordinates. In fact, T cam1

cam2
contains

6-DoF: three for rotation (Rcam1

cam2
) and three for translation (tcam1

cam2
). This transfor-

mation is required to fuse the results obtained by applying the monocular tracking

algorithm on each of the two mounted cameras individually. Equation 4.2 shows the

relationship that transforms any point in second camera’ coordinates (Xcam2) to the

first camera’s coordinates (Xcam1)

Xcam1 = Rcam1

cam2
Xcam2 + tcam1

cam2
(4.2)

The stereo calibration procedure requires simultaneous capturing of at least

20 images of a checkerboard, shown in Figure 4.5, by the two cameras from different

positions and orientations. The whole checkerboard should be visible in the images of

the two cameras. The two sets of images are processed and the corresponding poses

of the two cameras in a world coordination system defined by the checkerboard are

estimated. Using the estimated camera poses, the geometric transformation between

the coordinates of the two cameras is computed. Figure 4.6 illustrates the resulted

3D reconstructed scene from the stereo calibration. The two cameras are shown by

the red pyramids and the colored boards represent the position of the checkerboard

when each of the camera images was captured.

Table 4.1 summaries the estimated transformation resulted from the stereo

calibration. t = [tx, ty, tz]
T represents the translation components in x, y, and z

directions between camera 1 and camera 2, while [γ, β, α] are the rotation angles

around the x, y, and z axes, respectively, between camera 1 and camera 2 coordi-

nates.
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Figure 4.6: Illustration of the stereo calibration results. The red pyramids denote
the two cameras.

Table 4.1: Summary of the stereo calibration results.

Translation (mm) Rotation (degrees)
tx ty tz γ β α

77.4119 57.9711 −4.0838 5.8300 1.8734 90.8463

4.6 Spatial Ultrasound Calibration

One of the essential steps in the freehand 3D US system is the Ultrasound Calibration

[35, 36]. In this step, the rigid-body spatial transformation between the US scan

coordination system and the tracker coordination system is determined.

In our system, the spatial US calibration is performed using the single-wall

method introduced in [67] where the 6-DoF transformations between the coordina-

tion system of US scan and those of the two mounted camera are determined. This

is achieved by scanning a container filled with water, which has a flat bottom at a
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depth d. The US transducer acquires images of the bottom of the container from

various transducer positions and orientations. At the same time, the camera cap-

tures images of a 16×12 checkerboard which defines the world coordination system.

The checkerboard is affixed at the height d from the container’s bottom [14, 68].

Figure 4.7 depicts the spatial calibration setup and the different coordination

systems. To ensure the strong reflection of the container’s bottom in the US images

and the easiness of the line detection, a metal sheet has been placed in the bottom

of the container. The metal sheet clearly appears in the US scan as a straight line

with any point on it has the world coordinates (X, Y,−d, 1) and the US coordinates

(u, v, 0, 1). Keep in mind that u and v should be in the true physical dimensions,

i.e. millimeters, which can be determined from the pixel spacing in the US image.

The two coordinates relate as follows [67, 69]:

















X

Y

−d

1

















= Tworld
cam ∗ T cam

US

















u

v

0

1

















(4.3)

T a
b (x, y, z, α, β, γ) =

















cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ x

sαcβ sαsβsγ + cαcγ sαsβcγ + cαsγ y

−sβ cβsγ cβcγ z

0 0 0 1

















(4.4)

where Tworld
cam is the transformation from the camera coordinates to the checkerboard

world coordinates which can be determined by the extrinsic camera calibration per-

formed using the Matlab camera calibration toolbox [66]. T cam
US is the desired US to

camera transformation that remains the same through the calibration and later in

the scanning processes since the cameras are rigidly attached to the US transducer.
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The notations s and c represent the sin and cos functions, respectively. x, y, and

z represent the 3D translation components. α, β, and γ are the azimuth, elevation,

and roll rotation angles around the z, y, and x axes, respectively.

 

XUS = u 

YUS = v ZUS 

Xcam 

Zcam 

Ycam 

Xworld 

Zworld 

Yworld 

 = ??   

 

Depth = d 

US image 

Figure 4.7: The spatial US calibration setup showing the different coordination
systems.

At least 40 images for each camera where the checkerboard is visible are cap-

tured, while acquiring simultaneously 40 US images from the US machine. These

images should be acquired from different positions and orientations, so they can

adequately offer the required constraints that ensure the validity and the goodness

of the estimated transformation [67]. Each US image is processed and the line repre-

senting the metal sheet located at the bottom of the container is detected using the

line detection algorithm described in [67]. Figure 4.8 shows one of the acquired US

image where two points (small red circles) on the line, shown in green, were selected

near the two ends of the line.
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segmented image

Figure 4.8: An US image acquired during the spatial calibration. The green line
denotes the metal sheet in the bottom of the water container.

In order to find the desired 6 unknowns (3 translation components and 3 rota-

tion angles) that compose T cam
US , a set of equations are generated from the third row of

equation 4.3. Since these equations are non-linear, a least-square solution can be de-

termined using iterative optimization techniques such as the Levenberg-Marquardt

algorithm [59] or Trust-Region-Reflective algorithm [70]. These algorithms require

an initial estimation near to the desired solution. The initial estimate is generated

by measuring the distances and the angles between the cameras and the US trans-

ducer in the three dimensions. This optimization is performed for each camera. The

resulting transformation is used in the 3D US reconstruction.
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4.7 Summary

In this chapter, the system design and calibration procedures are explained in details.

First, the design of the transducer and the camera housing was described. Then, the

design of the artificial skin feature marker was presented. The different calibration

procedures required for estimating the system parameters and configurations were

then described. This includes: the scale calibration, the temporal calibration, the

camera calibration, and the US spatial calibration.
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Chapter 5

Experimental Results and System

Validation

In this chapter, the experimental results for the proposed system are presented.

Section 5.1 shows the experimental setup used to evaluate the camera tracking

algorithm proposed in Section 3.2 along with the associated results. Section 5.2

presents the performance of the proposed freehand 3D US system in synthesizing

3D volumes in in-vitro US experiments. In particular, Section 5.2.1 discusses the

experimental setup of these in-vitro experiments, while Section 5.2.2 demonstrates

the resulting reconstructed 3D volumes. Finally, Section 5.3 summarizes the chapter.

5.1 Camera Tracking Experiments

The camera tracking algorithm presented in Section 3.2 was implemented using

C++ OpenCV library (Open Source Computer Vision Library). The experiments

presented in this section were performed to analyze the performance of the proposed

camera tracking algorithm, which will test the applicability of this algorithm in the

proposed US transducer tracking system.
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5.1.1 Experimental Setup

In order to test the tracking accuracy of the camera tracking algorithm, the plastic

housing holding the two cameras has been attached to a digital caliper as shown

in Figure 5.1. The digital caliper has a measurement resolution of 0.01 mm. In

the experiment, the two cameras were shifted along the axis of the caliper in steps

of 0.5 mm. The displacement is shown on the digital display of the caliper. At

each step, an image of the binary pattern was captured by each camera. The total

displacement was 20 mm, which resulted in a sequence of 40 images of the binary

pattern captured by each camera. The configuration demonstrated in Figure 5.1

enables the evaluation of the tracking accuracy for translations along the x and y

axes of the two cameras.

Figure 5.1: The experimental setup of the camera tracking experiments.

5.1.2 Experimental Results

The image sequence captured by each camera was processed using the camera track-

ing algorithm. The algorithm extracted the camera position and orientation when

each captured image was taken, by tracking a set of distinguished feature points in
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the overlapped camera images. As explained in section 3.2, the algorithm builds a

3D point map of the pattern surface from the tracked feature points, and extract the

camera poses with respect to this reconstructed surface map. Figure 5.2 shows the

estimated camera positions (red) and the reconstructed point map of the pattern

surface (white).

Figure 5.2: The estimated poses of the camera (red) along with the reconstructed
3D point map of the binary pattern surface (white).

Using the implemented camera tracking algorithm, the average translation

error in determining the whole traveled distance of 20 mm was 0.75 mm on average

for the two cameras. These results demonstrated the capability of the camera-based

tracking system as an inexpensive and accurate US transducer tracking system that

can provide a potential alternative to the currently used electromagnetic and optical

tracking systems. Moreover, the presence of two cameras in the proposed tracking

algorithm enables the use of the fusion technique discussed in Section 3.3 to provide

more accurate and robust combined position estimates than the individual estimates

of each camera. This will be demonstrated in the next section.
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5.2 In-Vitro Three-Dimensional Ultrasound Ex-

periments

The applicability of the proposed camera-based tracking system to localize the US

transducer in freehand 3D US systems can not be fully justified without analyzing

the performance of the system in synthesizing actual 3D US volumes. This section

describes the in-vitro US experiments that were conducted to measure the accuracy

of the proposed system.

5.2.1 Experimental Setup

In-vitro US experiments were conducted to evaluate the system performance. In

particular, the system was tested by scanning agar-based phantoms, in which a

cylinder of a known volume and fiber crossed lines with known distances were em-

bedded. The wires were constructed from mono-filament fishing wires with radius

of 0.4 mm. The configuration of the wires was designed to enable the measure-

ment of the reconstruction accuracy in the axial, lateral and elevational directions.

On the other hand, the cylinder was made of plastic, and was used to determine

the accuracy of volume estimation using the proposed system. The ground truth

distance values were determined and ensured by embedding the cylinder and the

wires inside the 3D-printed plastic phantom fCal-2.0 that is available as part of the

PLUS toolkit [71]. The cylinder and the wires are shown in Figures 5.3a and 5.3b,

respectively. The random binary pattern was printed on transparent label sheets,

which were then affixed to the phantom surfaces in order to emulate the artificial

skin features. Finally, standard US gel was used as a coupling medium.

During the scanning process, the US transducer was moved in nearly linear

paths along the cylinder axis and the wires acquiring videos of 2D B-mode US im-

ages, in which the cross sections between the US image planes and the embedded
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(a) (b)

Figure 5.3: The cylinder (a) and crossed wires (b) that were embedded in the agar-
based phantoms for the in-vitro US experiments.

cylinder and wires appear as bright circles and dots, respectively. In the mean-

time, the two mounted cameras were synchronously recording videos of the artificial

features appended to the phantom surface.

5.2.2 Experimental Results

The recorded videos from each camera were processed to determine the 6-DoF cam-

era poses and build the 3D map of the agar-based phantom surface. Afterward, the

two camera pose sets from both cameras were spatially combined and fused poses

were computed using spatial averaging. Figure 5.4 presents the 6-DoF camera poses

estimated by the two cameras and the computed fused poses. These poses consists

of three x, y, and z translation components of the camera centers: cx, cy, and cz,

respectively, and three orientation components γ, β, and α representing the angles

around x, y, and z axes, respectively. As shown in Figure 5.4, the averaging-based

fused poses are better than those of each camera individually. However, the spatial

averaging does not act as desired in the presence of erroneous or extremely noisy

estimates as demonstrated in the plots of γ and β angle estimates.

Our next analysis focused on the impact of applying the proposed Kalman

filtering fusion technique to combine the individual camera pose estimates instead
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of the spatial averaging. A comparison is shown in Figure 5.5, where the computed

fused 6-DoF camera poses based on spatial averaging and Kalman filtering are illus-

trated. It is clearly shown that Kalman filtering provides smoother and more robust

pose estimates.

The fused camera poses were then used to determine the corresponding poses

for the 2D US scans. Afterward, 3D US volumes were reconstructed from these

localized US scans. These reconstructed volumes were visualized using the Stradwin

tool [48]. Stradwin also enables the segmentation of the cylinder and the embedded

wires on the 2D US images.

The spatially registered 2D US scans and the reconstructed cylinder are shown

in Figure 5.6. Kalman filtering provides better quality results in terms of both the

continuity and the smoothness of the synthesized volume. Moreover, the volume of

the reconstructed cylinder were measured and compared to the true values. Using

the proposed system, the average errors in estimating the cylinder volume using the

spatial averaging and Kalman filtering were 5% and 3.78%, respectively.

Figure 5.7 illustrates the spatially registered 2D US scans and the recon-

structed crossed wires based on the fused camera pose estimates computed using the

spatial averaging and Kalman filtering. Again, Kalman filtering affirms its capabil-

ity as the best choice providing higher quality and finer 3D volumes. The distances

between the intersection points between the wires were measured and compared

to the true values. A distance of 10 mm was measured in the synthesized 3D US

volumes by the 6-DoF poses estimated using each individual camera, spatial aver-

aging, and Kalman filtering. Table 5.1 summaries the resulted distance estimates

using the three different methods. Using Kalman filtering, the error is around 0.35

mm. These results are considered reasonable compared to the commercial tracking

systems formed using the costly electromagnetic and optical sensors.

In [14], the authors have expected that the accuracy achieved by a single-

camera tracking system will be improved using two cameras. This has been validated
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(a) (b)

Figure 5.6: The spatially registered US scans (white) and the appended 3D recon-
structed cylinder based on the fused pose estimates computed using spatial averaging
(a) and Kalman filtering (b).

(a) (b)

Figure 5.7: The spatially registered US scans (white) and the appended 3D recon-
structed crossed wires based on the fused pose estimates computed using spatial
averaging (a) and Kalman filtering (b).
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Table 5.1: Summary of the 3D US distance estimation results.

True distance Estimated distance (mm)
(mm) Individual Camera Spatial Averaging Kalman Filtering
10 10.7 10.55 10.35

by our proposed system where a 10 mm distance was measured within an error of

0.35 mm compared with an error of 0.7 mm if only one camera was used.

5.3 Summary

In this chapter, the evaluation of the proposed system was presented. First, the

experimental setup used for the evaluation of the camera tracking algorithm was

introduced. Then, the results of these experiments were presented. Next, the in-

vitro US experiments were explained along with the resulting reconstructed 3D US

volumes. Finally, the accuracy of the estimated 3D distance and volumes were

presented.
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Chapter 6

Conclusion and Future Work

Medical US imaging is an essential imaging technique that is commonly used in

clinical diagnosis and therapy management, since it is a real-time, portable, safe

and inexpensive imaging technique. However, the development of 3D imaging in

other imaging modalities such as CT and MRI have urged the extension of the

conventional 2D US imaging to 3D which enhanced the capabilities of US imaging

and expanded its clinical uses.

Although some companies have developed high-end US machines in which

complex 2D phased array transducers are used to directly acquire high quality 3D

US volumes of the scanned anatomy, the use of such machines is still limited since

they are highly expensive. This prompted the development of new approaches to

build 3D US systems that are based on the widespread conventional 2D US ma-

chines. One of these approaches is the tracked freehand 3D US imaging in which

a tracking system accurately localizes the freely moved US transducer during the

US scanning process. Currently, electromagnetic and optical tracking systems are

the most popular tracking systems used in freehand 3D US imaging. These systems

provide excellent tracking accuracy of sub-millimeters. However, they are considered

expensive and bulky, and require special conditions to operate.

In this thesis, a low-cost camera-based system has been proposed to track
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the US transducer with respect to the skin surface and synthesize freehand 3D US

volumes. The system presented in this thesis provides an accurate cost-effective

transducer tracking system that can replace the currently used systems and give

the hospitals in underdeveloped countries the access to advanced 3D US imaging

technologies.

The proposed system uses two cameras to accurately track some distinguished

artificial skin features in the scanned area while the US transducer synchronously

acquires 2D B-mode US images of the scanned tissue. The proposed system builds a

3D point map of the skin surfaces out from the tracked skin features and simultane-

ously estimates the 6-DoF poses of each camera separately. The set of pose estimates

of each camera can be separately used to derive the trajectory of the US transducer

and subsequently synthesizes the 3D US volume. However, the proposed system

applies a fusion process based on Kalman filtering; in which the individual pose

estimates of the two cameras are combined to provide an optimized and robust set

of estimates of the US transducer poses. Consequently, more accurate and less noisy

3D US volumes can be synthesized. Finally, a set of calibration procedures required

for the operating of the proposed system have been performed. These procedures

include temporal and spatial US calibration, as well as camera calibration.

The proposed tracking system have been implemented using C++ OpenCV

library and extensively tested by set of experiments. First, the camera pose estima-

tion algorithm has been evaluated and the accuracy of the camera tracking has been

reported. Next, in-vitro experiments of freehand scans of agar-based US phantoms

have been designed and conducted to measure the accuracy of the reconstructed

3D US volumes. The proposed fusion technique based on Kalman filtering outper-

formed the single-camera tracking technique. The results of the experiments showed

that the system can generate accurate high-quality US volumes. Using the system,

the average error in computing a cylinder volume was 3.8%. Also, a distance of

10 mm was measured within an error of 0.35 mm. These results are considered
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reasonable compared to the commercial tracking systems formed using the costly

electromagnetic and optical sensors and they demonstrated the capability of our

tracking system as inexpensive and accurate alternative of these tracking systems.

It is believed that this thesis presents an important milestone in the efforts of

developing cost-effective framework for 3D US imaging that can improve and facil-

itate the clinical and diagnostic procedures. However, the proposed system should

be further validated by conducting in-vivo experiments where real tissue specimens

are scanned and analyzed. Moreover, a qualitative and quantitative comparison

with currently used optical and electromagnetic tracking system can be performed

to demonstrate the potential of the proposed system.

Our future work also includes improving the accuracy of the system. The

camera pose estimation algorithm could be optimized by enabling the tracking of

natural skin features. This will eliminate the need of sterilized inconvenient artificial

markers, but will require developing a preprocessing technique to the camera images

of the skin features especially in the homogeneous skin areas where distinguished

features are rare. Another interesting field for improvement will be enabling bun-

dle adjustment over a limited window of camera frames instead the whole image

set. This could accelerate the pose estimation process and enable online real-time

transducer tracking. However, this process embeds the challenge of maintaining the

same tracking accuracy level since a small group of frames participate in the opti-

mization step, which may increase the possibility of bigger incremental drift errors.

Finally, the fusion technique can be enhanced by incorporating prior motion mod-

els and sensorless speckle-based US tracking [12, 32] into the Kalman filtering. In

addition, more advanced and complex filters can be applied to improve the system

performance.
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