11 research outputs found

    Low complexity HEVC sub-pixel motion estimation technique and its hardware implementation

    Get PDF
    In this paper, a low complexity High Efficiency Video Coding (HEVC) sub-pixel motion estimation (SPME) technique is proposed. The proposed technique reduces the computational complexity of HEVC SPME significantly at the expense of slight quality loss by calculating the sum of absolute difference (SAD) values of sub-pixel search locations using the SAD values of neighboring integer pixel search locations. In this paper, an efficient HEVC SPME hardware implementing the proposed technique for all prediction unit (PU) sizes is also designed and implemented using Verilog HDL. The proposed hardware, in the worst case, can process 38 Quad Full HD (3840×2160) video frames per second

    An HEVC fractional interpolation hardware using memory based constant multiplication

    Get PDF
    Fractional interpolation is one of the most computationally intensive parts of High Efficiency Video Coding (HEVC) video encoder and decoder. In this paper, an HEVC fractional interpolation hardware using memory based constant multiplication is proposed. The proposed hardware uses memory based constant multiplication technique for implementing multiplication with constant coefficients. The proposed memory based constant multiplication hardware stores pre-computed products of an input pixel with multiple constant coefficients in memory. Several optimizations are proposed to reduce memory size. The proposed HEVC fractional interpolation hardware, in the worst case, can process 35 quad full HD (3840×2160) video frames per second. It has up to 31% less energy consumption than original HEVC fractional interpolation hardware

    FPGA implementations of HEVC sub-pixel interpolation using high-level synthesis

    Get PDF
    Sub-pixel interpolation is one of the most computationally intensive parts of High Efficiency Video Coding (HEVC) video encoder and decoder. High-level synthesis (HLS) tools are started to be successfully used for FPGA implementations of digital signal processing algorithms. Therefore, in this paper, the first FPGA implementation of HEVC sub-pixel (half-pixel and quarter-pixel) interpolation algorithm using a HLS tool in the literature is proposed. The proposed HEVC sub-pixel interpolation hardware is implemented on Xilinx FPGAs using Xilinx Vivado HLS tool. It, in the worst case, can process 45 quad full HD (3840×2160) video frames per second. Using HLS tool significantly reduced the FPGA development time. Therefore, HLS tools can be used for FPGA implementation of HEVC video encoder

    A low power versatile video coding (VVC) fractional interpolation hardware

    Get PDF
    Fractional interpolation in Versatile Video Coding (VVC) standard has much higher computational complexity than fractional interpolation in previous video compression standards. In this paper, a low power VVC fractional interpolation hardware is designed and implemented using Verilog HDL. The proposed hardware is the first VVC fractional interpolation hardware in the literature. It interpolates necessary fractional pixels for 1/16 pixel accuracy for all prediction unit sizes. The proposed VVC fractional interpolation hardware, in the worst case, can process 40 full HD (1920x1080) frames per second. It has up to 17% less power consumption than original VVC fractional interpolation hardware

    An efficient interpolation filter VLSI architecture for HEVC standard

    Get PDF

    FGPA implementations of motion estimation algorithms using Vivado high level synthesis

    Get PDF
    Joint collaborative team on video coding (JCT-VC) recently developed a new international video compression standard called High Efficiency Video Coding (HEVC). HEVC has 50% better compression efficiency than previous H.264 video compression standard. HEVC achieves this video compression efficiency by significantly increasing the computational complexity. Motion estimation is the most computationally complex part of video encoders. Integer motion estimation and fractional motion estimation account for 70% of the computational complexity of an HEVC video encoder. High-level synthesis (HLS) tools are started to be successfully used for FPGA implementations of digital signal processing algorithms. They significantly decrease design and verification time. Therefore, in this thesis, we proposed the first FPGA implementation of HEVC full search motion estimation using Vivado HLS. Then, we proposed the first FPGA implementations of two fast search (diamond search and TZ search) algorithms using Vivado HLS. Finally, we proposed the first FPGA implementations of HEVC fractional interpolation and motion estimation using Vivado HLS. We used several HLS optimization directives to increase performance and decrease area of these FPGA implementations

    High performance HEVC and FVC video compression hardware designs

    Get PDF
    High Efficiency Video Coding (HEVC) is the current state-of-the-art video compression standard developed by Joint collaborative team on video coding (JCT-VC). HEVC has 50% better compression efficiency than H.264 which is the previous video compression standard. HEVC achieves this video compression efficiency by significantly increasing the computational complexity. Therefore, in this thesis, we proposed a low complexity HEVC sub-pixel motion estimation (SPME) technique for SPME in HEVC encoder. We designed and implemented a high performance HEVC SPME hardware implementing the proposed technique. We also designed and implemented an HEVC fractional interpolation hardware using memory based constant multiplication technique for both HEVC encoder and decoder. Future Video Coding (FVC) is a new international video compression standard which is currently being developed by JCT-VC. FVC offers much better compression efficiency than the state-of-the-art HEVC video compression standard at the expense of much higher computational complexity. In this thesis, we designed and implemented three different high performance FVC 2D transform hardware. The proposed hardware is verified to work correctly on an FPGA board

    Low energy HEVC and VVC video compression hardware

    Get PDF
    Video compression standards compress a digital video by reducing and removing redundancy in the digital video using computationally complex algorithms. As spatial and temporal resolutions of videos increase, compression efficiencies of video compression algorithms are also increasing. However, increased compression efficiency comes with increased computational complexity. Therefore, it is necessary to reduce computational complexities of video compression algorithms without reducing their visual quality in order to reduce area and energy consumption of their hardware implementations. In this thesis, we propose a novel technique for reducing amount of computations performed by HEVC intra prediction algorithm. We designed low energy, reconfigurable HEVC intra prediction hardware using the proposed technique. We also designed a low energy FPGA implementation of HEVC intra prediction algorithm using the proposed technique and DSP blocks. We propose a reconfigurable VVC intra prediction hardware architecture. We also propose an efficient VVC intra prediction hardware architecture using DSP blocks. We designed low energy VVC fractional interpolation hardware. We propose a novel approximate absolute difference technique. We designed low energy approximate absolute difference hardware using the proposed technique. We propose a novel approximate constant multiplication technique. We designed approximate constant multiplication hardware using the proposed technique. We quantified computation reductions achieved by the proposed techniques and video quality loss caused by the proposed approximation techniques. The proposed approximate absolute difference technique and approximate constant multiplication technique cause very small PSNR loss. The other proposed techniques cause no PSNR loss. We implemented the proposed hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 or Xilinx Virtex 7 FPGAs and estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed techniques significantly reduced power and energy consumptions of these FPGA implementation
    corecore