11 research outputs found

    A logical basis for constructive systems

    Full text link
    The work is devoted to Computability Logic (CoL) -- the philosophical/mathematical platform and long-term project for redeveloping classical logic after replacing truth} by computability in its underlying semantics (see http://www.cis.upenn.edu/~giorgi/cl.html). This article elaborates some basic complexity theory for the CoL framework. Then it proves soundness and completeness for the deductive system CL12 with respect to the semantics of CoL, including the version of the latter based on polynomial time computability instead of computability-in-principle. CL12 is a sequent calculus system, where the meaning of a sequent intuitively can be characterized as "the succedent is algorithmically reducible to the antecedent", and where formulas are built from predicate letters, function letters, variables, constants, identity, negation, parallel and choice connectives, and blind and choice quantifiers. A case is made that CL12 is an adequate logical basis for constructive applied theories, including complexity-oriented ones

    Introduction to clarithmetic II

    Full text link
    The earlier paper "Introduction to clarithmetic I" constructed an axiomatic system of arithmetic based on computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html), and proved its soundness and extensional completeness with respect to polynomial time computability. The present paper elaborates three additional sound and complete systems in the same style and sense: one for polynomial space computability, one for elementary recursive time (and/or space) computability, and one for primitive recursive time (and/or space) computability

    Build your own clarithmetic I: Setup and completeness

    Full text link
    Clarithmetics are number theories based on computability logic (see http://www.csc.villanova.edu/~japaridz/CL/ ). Formulas of these theories represent interactive computational problems, and their "truth" is understood as existence of an algorithmic solution. Various complexity constraints on such solutions induce various versions of clarithmetic. The present paper introduces a parameterized/schematic version CLA11(P1,P2,P3,P4). By tuning the three parameters P1,P2,P3 in an essentially mechanical manner, one automatically obtains sound and complete theories with respect to a wide range of target tricomplexity classes, i.e. combinations of time (set by P3), space (set by P2) and so called amplitude (set by P1) complexities. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a solution from the given tricomplexity class and, furthermore, such a solution can be automatically extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a solution from the given tricomplexity class is represented by some theorem of the system. Furthermore, through tuning the 4th parameter P4, at the cost of sacrificing recursive axiomatizability but not simplicity or elegance, the above extensional completeness can be strengthened to intensional completeness, according to which every formula representing a problem with a solution from the given tricomplexity class is a theorem of the system. This article is published in two parts. The present Part I introduces the system and proves its completeness, while Part II is devoted to proving soundness

    Introduction to clarithmetic I

    Get PDF
    "Clarithmetic" is a generic name for formal number theories similar to Peano arithmetic, but based on computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of the more traditional classical or intuitionistic logics. Formulas of clarithmetical theories represent interactive computational problems, and their "truth" is understood as existence of an algorithmic solution. Imposing various complexity constraints on such solutions yields various versions of clarithmetic. The present paper introduces a system of clarithmetic for polynomial time computability, which is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be efficiently extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is written in a semitutorial style and targets readers with no prior familiarity with computability logic

    The taming of recurrences in computability logic through cirquent calculus, Part I

    Full text link
    This paper constructs a cirquent calculus system and proves its soundness and completeness with respect to the semantics of computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html). The logical vocabulary of the system consists of negation, parallel conjunction, parallel disjunction, branching recurrence, and branching corecurrence. The article is published in two parts, with (the present) Part I containing preliminaries and a soundness proof, and (the forthcoming) Part II containing a completeness proof

    From formulas to cirquents in computability logic

    Full text link
    Computability logic (CoL) (see http://www.cis.upenn.edu/~giorgi/cl.html) is a recently introduced semantical platform and ambitious program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth that logic has more traditionally been. Its expressions represent interactive computational tasks seen as games played by a machine against the environment, and "truth" is understood as existence of an algorithmic winning strategy. With logical operators standing for operations on games, the formalism of CoL is open-ended, and has already undergone series of extensions. This article extends the expressive power of CoL in a qualitatively new way, generalizing formulas (to which the earlier languages of CoL were limited) to circuit-style structures termed cirquents. The latter, unlike formulas, are able to account for subgame/subtask sharing between different parts of the overall game/task. Among the many advantages offered by this ability is that it allows us to capture, refine and generalize the well known independence-friendly logic which, after the present leap forward, naturally becomes a conservative fragment of CoL, just as classical logic had been known to be a conservative fragment of the formula-based version of CoL. Technically, this paper is self-contained, and can be read without any prior familiarity with CoL.Comment: LMCS 7 (2:1) 201

    On the system CL12 of computability logic

    Full text link
    corecore