21 research outputs found

    Providing Long-Term Participation Incentive in Participatory Sensing

    Full text link
    Providing an adequate long-term participation incentive is important for a participatory sensing system to maintain enough number of active users (sensors), so as to collect a sufficient number of data samples and support a desired level of service quality. In this work, we consider the sensor selection problem in a general time-dependent and location-aware participatory sensing system, taking the long-term user participation incentive into explicit consideration. We study the problem systematically under different information scenarios, regarding both future information and current information (realization). In particular, we propose a Lyapunov-based VCG auction policy for the on-line sensor selection, which converges asymptotically to the optimal off-line benchmark performance, even with no future information and under (current) information asymmetry. Extensive numerical results show that our proposed policy outperforms the state-of-art policies in the literature, in terms of both user participation (e.g., reducing the user dropping probability by 25% to 90%) and social performance (e.g., increasing the social welfare by 15% to 80%).Comment: This manuscript serves as the online technical report of the article published in IEEE International Conference on Computer Communications (INFOCOM), 201

    Design and evaluation of a privacy architecture for crowdsensing applications

    Get PDF
    By using consumer devices such as cellphones, wearables and Internet of Things devices owned by citizens, crowdsensing systems are providing solutions to the community in areas such as transportation, security, entertainment and the environment through the collection of various types of sensor data. Privacy is a major issue in these systems because the data collected can potentially reveal aspects considered private by the contributors of data. We propose the Privacy-Enabled ARchitecture (PEAR), a layered architecture aimed at protecting privacy in privacy-aware crowdsensing systems. We identify and describe the layers of the architecture. We propose and evaluate the design of MetroTrack, a crowdsensing system that is based on the proposed PEAR architecture

    Interval Tree-Based Task Scheduling Method for Mobile Crowd Sensing Systems

    Get PDF
    Nowadays there is an increasing demand to provide a real-time environmental information. So, the growing number of mobile devices carried by users establish a new and fastgrowing sensing paradigm to satisfy this need, which is called Mobile Crowd Sensing (MCS). The MCS uses different sensing abilities to acquire local knowledge through enhanced mobile devices. In MCS, it is very important to collect high-quality sensory data that satisfies the needs of all assigned tasks and the task organizers with a minimum cost for the participants. One of the most important factors which affect the MCS cost is how to schedule different sensing tasks which must be assigned to a smartphone with the objective of minimizing sensing energy consumption while ensuring high-quality sensory data. In this paper, the problem of task scheduling the which have mutual sensor is formulated and a scheduling method to minimize the energy consumption by reducing the sensor utilization is proposed. The proposed method will incentive the users to participate in multiple tasks at the same time, which minimizes the total cost of the performed tasks and increases his rewards. The experimental results by using synthetic and real data show that the proposed scheduling method can minimize the energy consumption and preserve the task requirements compared to existing algorithms

    How to crowdsource tasks truthfully without sacrificing utility: Online incentive mechanisms with budget constraint

    Full text link
    Abstract—Mobile crowdsourced sensing (MCS) is a new paradigm which takes advantage of the pervasive smartphones to efficiently collect data, enabling numerous novel applications. To achieve good service quality for a MCS application, incentive mechanisms are necessary to attract more user participation. Most of existing mechanisms apply only for the offline scenario where all users ’ information are known a priori. On the contrary, we focus on a more realistic scenario where users arrive one by one online in a random order. Based on the online auction model, we investigate the problem that users submit their private types to the crowdsourcer when arrive, and the crowdsourcer aims at selecting a subset of users before a specified deadline for maximizing the value of the services (assumed to be a non-negative monotone submodular function) provided by selected users under a budget constraint. We design two online mecha-nisms, OMZ and OMG, satisfying the computational efficiency, individual rationality, budget feasibility, truthfulness, consumer sovereignty and constant competitiveness under the zero arrival-departure interval case and a more general case, respectively. Through extensive simulations, we evaluate the performance and validate the theoretical properties of our online mechanisms. I
    corecore