
University of Nebraska at Omaha University of Nebraska at Omaha 

DigitalCommons@UNO DigitalCommons@UNO 

Computer Science Faculty Publications Department of Computer Science 

4-30-2018 

Design and evaluation of a privacy architecture for crowdsensing Design and evaluation of a privacy architecture for crowdsensing 

applications applications 

Alfredo J. Perez 

Sherali Zeadally 

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub 

 Part of the Computer Sciences Commons 

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE 

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
http://library.unomaha.edu/
http://library.unomaha.edu/


Design and evaluation of a privacy architecture for 
crowdsensing applications 
 
Alfredo J. Perez  
Columbus State University 4225 University Ave. CCT 424 Columbus, GA, USA 31907 

perez_alfredo@columbusstate.edu 

 

Sherali Zeadally  
University of Kentucky 315 Little Library Building Lexington, KY, USA 40506-0224 

szeadally@uky.edu 

 

ABSTRACT 
By using consumer devices such as cellphones, wearables and Internet of Things 

devices owned by citizens, crowdsensing systems are providing solutions to the 

community in areas such as transportation, security, entertainment and the environment 

through the col- lection of various types of sensor data. Privacy is a major issue in these 

systems because the data collected can potentially reveal aspects considered private 

by the contributors of data. We propose the Privacy-Enabled ARchitecture (PEAR), a 

layered architecture aimed at protecting privacy in privacy-aware crowdsensing 

systems. We identify and describe the layers of the architecture. We propose and 

evaluate the design of MetroTrack, a crowdsensing system that is based on the 

proposed PEAR architecture. 
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1. INTRODUCTION 
The ubiquity of Internet-connected consumer devices have the potential to 

improve issues affecting communities through the crowdsensing paradigm. In 

crowdsensing systems (also known as community-based sensing systems), people 

collect sensor data using their own consumer devices such as cellphones, wearables, 

and Internet of Things (IoT) devices (e.g., Internet-connected cars) with the goal of 

helping a community (e.g., a city or town) in areas such as environmental monitoring, 

transportation, entertainment, security, and healthcare. 

Recent technological advances in the last decade in the miniaturization of 

sensors, computing power, and the mobile Internet, along with the ubiquity of these 

consumer devices have enabled the implementation and deployment crowdsensing 

systems [21][30]. The protection of privacy in crowdsensing systems plays an important 

role in their successful development and deployment because the use of consumer 

devices to collect sensor data presents significant privacy risks to all of the participants 

involved. Thus, the use of Internet-connected consumer devices in crowdsensing faces 

a tradeoff: on one hand we need to collect data as accurately as possible, but on the 

other hand the collection and sharing of crowdsensing data must preserve the privacy of 

users [1][31]. 

We review the privacy issues and solutions in crowdsensing systems, then we 

present the Privacy-Enabled Architecture (PEAR), a layered architecture aimed at 

protecting the privacy of users involved in crowdsensing systems. We describe the main 

components of the architecture, and we evaluate MetroTrack, an implementation of the 

proposed PEAR architecture. 

2. CROWDSENSING SYSTEMS 
Advances and integration of Micro Electro-Mechanical Systems (MEMS) with 

communication and computing devices in the 1990’s paved the way for the development 

of Wireless Sensor Networks (WSNs). Even though early research in this area was 

performed in the 1970’s through the Defense Advanced Research Project Agency’s 

(DARPA) Distributed Sensor Networks program [30], the vision behind the development 

of WSNs during the 1990’s was to collect data of interest in a particular geographical 

area while minimizing the cost to deploy and maintain the network, and maximizing the 



lifetime of the WSN and the coverage area the WSN monitors. Thus, the devices that 

were developed for WSNs were of small sizes (as small as 2 mm2) while at the same 

time these devices could sense, transmit data, and harvest their energy needs from the 

environment. It was envisioned that WSNs could be active for years without human 

intervention and to be cheap enough to be deployed everywhere to enable the 

deployment of thousands of sensing de- vices in a single WSN [30]. 

As research progressed in the development of WSN systems, certain goals, in 

particular the ones that minimize the costs of deployment and maintenance were not 

achievable when deploying thou- sands of devices in a single WSN as initially thought. 

The consequence was that the actual deployments of static WSNs were done as small 

and focused WSNs deployments with only a few hundreds of devices [30]. In the early 

21st century, cellular devices started to become ubiquitous and, in the past decade, 

these cellular devices became powerful enough to connect to the Internet. Eventually, 

these mobile devices were manufactured with integrated sensors such as 

accelerometers, gyroscopes, location sensors which could be potentially used to collect 

different types of data of interest. 

Crowdsensing systems have been developed during last decade as an 

alternative to static wireless sensor networks in urban environments to address the 

collection of data in an inexpensive manner. These systems take advantage of the 

availability of the mobile Internet and the ubiquity of powerful, sensor-enabled consumer 

de- vices such as mobile phones, wearables and IoT devices [5][30]. Application areas 

where these systems are being deployed include environmental monitoring, 

transportation, entertainment, security, among others [17][20][21][22][27][28]. In this 

section we provide an overview of crowdsensing systems, the threats to privacy in 

crowdsensing systems, and a review of the solutions available to help mitigate these 

threats. 



 
Figure 1. Hardware components of crowdsensing systems. 
 
2.1 Hardware Architectures and Actors 
The typical hardware components of crowdsensing systems are presented in figure 1, 

and they include [30]: 

• Sensors: These components collect data (e.g., temperature, movement, noise, 

images) from physical actions or processes. 

• First-level integrators: They perform initial data verification, aggregation and 

basic analysis (e.g., feature ex- traction) on the data collected by sensors. 

• Data transport: In crowdsensing systems, data transport is provided by the 

Internet or any communication net- work that enables the end-to-end transfer. 

• Second-level integrators: These components collect and store data sent from 

first-level integrators. They also pro- vide analytics services and feedback to first-

level integra- tor devices and to external entities. 

• These components are utilized to collect sensor data through sensing tasks 

which are software applications or scripts executed at first-level integrator 

devices. There are three major actors that participate in the data collection for 

crowdsensing systems: 

• Task organizers: They develop the sensing tasks that will be deployed at first-

level integrators. 

• Participants: They represent the entities that own or are in custody of first-level 

integrator devices. They may be provided feedback based on the collected data.  

• External entities: They represent third parties whom task organizers can share 

data (or information) generated from the sensor data. 

The actors interact with the hardware in the crowdsensing system with the goal to 



collect sensor data and metadata through the data collection cycle shown in figure 2. 

This collection cycle is com- posed of the following processes: 

• Task distribution: The goal of task distribution is to re- lease the sensing task to 

user participants. This is accomplished in two ways: participants either makes use 

of the sensing task from a server (second-level integrators), or the task is pushed 

to the users’ devices (first-level integrators) from second-level integrators. 

• Data collection: Once tasks are configured at the participants’ devices, the tasks 

perform sensing and initial analysis that may include extracting features from 

sensor data, smoothing and filtering of outliers in the data, and data analytics that 

can be performed locally without the need of second-level integrators. 

• Data submission: Tasks that execute at first-level integrators forward the collected 

data to second-level integrator devices. Depending on the system’s goals, data 

submission can be performed continuously or based on events (identified in the 

data collection process), and data can be submitted in real time or later (e.g., at 

the end of the day). 

• Data analysis and sharing: In this process, second-level integrator devices use 

the collected data from fist-level integrators to perform analytics services (e.g., 

data analysis and machine learning) and provide feedback to first- level integrator 

devices. The feedback may include the release of new sensing tasks to user 

participants, resulting in a new data collection cycle. In addition, data may be 

released to external parties outside the system through this process. 
 

 
Figure 2. Processes for data collection in crowdsensing. 



3. RELATED WORKS ON PRIVACY SO- LUTIONS FOR CROWDSENSING 
As the devices that collect sensor data in crowdsensing systems are usually 

owned by citizens, the protection of their privacy becomes an important issue for the 

successful deployment of these systems. The data collected could be potentially linked 

with the identities of participants or the data could reveal aspects about individuals that 

are considered private [1][6][31][32][36]. Attacks to privacy in crowdsensing may be 

broadly classified as (1) re-identification at- tacks; (2) contextual attacks. We summarize 

the advantages and disadvantages of privacy protection mechanisms to mitigate re- 

identification and contextual attacks in table 1 and table 2 respectively. 

3.1 Re-identification Attacks 
Re-identification attacks are successful when a rogue entity discovers the identity 

of participants from the data (or metadata) collected (or submitted by the participants) in 

the system. These attacks may occur because the participants’ identities are inferred 

from metadata such as network addresses/identifiers (e.g., IP addresses, MAC 

addresses and cookies) which are needed by network protocols to send and receive 

data, or they may be accomplished through the discovery of identities from any of the 

tasks performed by the crowdsensing system to collect data (figure 2). Privacy 

protection mechanisms against re-identification attacks which use network identifiers 

can be achieved by using double encryption via brokers [36][38], peer-to-peer (P2P) 

anonymization networks [2][6], and the utilization of disposable network identifiers such 

as pseudonyms [8][10][13][35]. 

In the case of re-identification attacks, because of the management of sensing 

tasks in the crowdsensing system, privacy solutions de- pend on the processes involved 

during data collection (as shown in figure 2). For example, for task distribution, the 

privacy solutions to avoid re-identification include the utilization of beacons that dis- 

tribute tasks through the broadcasting of signals from the beacons or access points 

(such as WiFi access points) to the first-level integrator devices [36], task downloading 

at crowded spaces (in the case of mobile, first-level integrator devices) [36], and the use 

of anonymization networks [2]. In the case of data collection and sub- mission 

processes, solutions to handle re-identification include the use of group-based 

signatures [15], data aggregation [34], and the use of representative samples from the 



data collected in a region [16][38]. 

3.2 Contextual Attacks 
Given the data (or metadata) submitted to the system by participants, contextual 

attacks attempt to discover and associate aspects considered private by participants 

with their identity. Examples in this category include inferring contexts such as places, 

activities, behaviors, and/or health state based on the collected data. The goal of these 

solutions is to diminish or eliminate the risks of discovering and associating aspects or 

contexts considered private by participants from the data (or metadata) submitted them 

to the system. Table 2 presents the advantages and disadvantages of privacy protection 

mechanisms to mitigate re-identification attacks. 

To thwart contextual attacks, privacy solutions can be divided into two groups: (1) 

solutions to manage contextual attacks at the data collection stage; (2) solutions to 

manage contextual attacks when the collected data is shared externally (to third 

parties). In the first group of solutions (privacy protection at data collection) solutions 

include the bubble sensing [24] approach which allows data collection in a particular 

context and the virtual walls approach which deny data collection at predefined contexts 

[7]. In the case of external data sharing, solutions to handle contextual attacks include 

anonymization in the release of microdata (e.g., k-anonymity [37], l-diversity [25], and t-

closeness [23]), and methods to release aggregated data (e.g., statistical data) [9][12]. 

We summarize the main research contributions of this work as follows: 

• We propose the design of a privacy architecture called Privacy Enabled 

Architecture (PEAR) which is a layered software architecture for crowdsensing 

systems wherein first-level integrators and second-level integrators are abstracted 

as data contributors. This allows second-level integrators to become data 

providers for other crowdsensing systems without defining new layers. 

• We present the implementation of MetroTrack, a crowdsensing system based on 

the PEAR architecture that runs on the JavaEE frameworks and the Android 

platform. 

• We evaluate the privacy mechanisms incorporated in the design of MetroTrack to 

protect participants’ privacy. 



4. THE PRIVACY ENABLED ARCHITEC- TURE (PEAR) 
We propose the PEAR architecture which consists of four abstraction layers 

namely communication, anonymization, security and privacy, and processing. First-level 

and second-level integrator de- vices are referred to as integrators in the PEAR 

architecture, as this abstraction allows second-level integrator devices to become data 

providers (i.e., first-level integrators) for other crowdsensing systems without having to 

define new layers to share data. This architecture also manages scalability by creating 

networks of second- level integrator devices. Figure 3 depicts an example of a PEAR- 

enabled system. 

4.1 Communication Layer 
This layer abstracts the communication protocols between integra- tor devices. 

Usually these protocols are implemented by the TCP/IP protocol stack suite. However, 

given the ubiquity of cellular net- works in crowdsensing systems, communication 

protocols for crowdsensing could be implemented over the Multimedia Messaging 

System (MMS) infrastructure, or Short Messaging System (SMS). 

4.2 Anonymization Layer 
This layer implements mechanisms that allow integrator devices to hide network 

location identifiers (e.g., IP addresses) from other integrators and external parties to 

avoid re-identification attacks. These anonymization mechanisms may be implemented 

through trusted third parties [38], or by using peer-to-peer anonymization networks (e.g., 

Tor). Systems may bypass anonymization depending on the goals of the system, or if 

participants give consent to include network identifiers as part of the data collected by 

the crowdsensing system.  

4.3       Security and Privacy Layer  
This layer implements mechanisms and protocols to encrypt data between 

integrator devices, and includes privacy-preserving mechanisms for integrator devices. 

Security mechanisms in this layer include symmetric and asymmetric cryptographic 

methods and protocols that guarantee end-to-end security between integrator devices. 

Privacy mechanisms in this layer implement algorithms/procedures to allow participants 

to handle their exposure to context privacy attacks (e.g., privacy rules, algorithms to 

handle location privacy) and mechanisms to handle privacy for second-level integrators 



when sharing bulk data release (microdata release) [9] and aggregated (summarized, 

statistical) data release with external parties. 

 



 



  
 

4.4 Processing Layer 
This layer includes mechanisms and protocols that collect and analyze sensor 

data. These mechanisms may be implemented at first- level integrator devices to 

perform initial data analysis (e.g., feature extraction, data smoothing) and at second-

level integrators to ex- tract information (e.g., outlier detection, machine learning). The 

processing layer may include mechanisms to handle privacy implemented by task 

organizers for integrator devices (e.g. a task organizer specifies where sensor data 

should not be collected) and may also include mechanisms to provide incentives for 

participants. The processing layer mechanisms make use of software Application 

Programming Interfaces (e.g., an app development framework, a server-side 

framework) for in their implementation. The processing layer also implements 

mechanisms to perform efficient data collection (e.g., power optimization in case of first-

level integrator devices). 

5. MetroTrack: A PROTOTYPE SYSTEM USING PEAR 
We describe the design of a prototype implementation of the PEAR architecture 

called MetroTrack, a system on which a city administration (task manager) can issue 

crowdsensing tasks to its citizens (participants) to collect data of interest. In this system, 

the citizens participate altruistically in the data collection, and tasks can be either 

participatory (e.g., uploading of photos/videos for security [3]) or opportunistic (e.g., 



tracking of road congestion, or road maintenance status [26]). MetroTrack consists of 

client (participant) ap- plications executing on Android-enabled devices, and server-side 

components that are deployed in the cloud using the Java Enterprise Edition (EE) 

framework.  

5.1 MetroTrack’s Mobile Components 
Four applications make up the MetroTrack’s mobile components for the Android 

OS (figure 4). Each of these components implements different layers of the proposed 

PEAR architectural model. 

5.1.1 Orbot client 

MetroTrack makes use of the Orbot [29] application which is the Tor’s network 

proxy for Android. The Tor network [11] is an anonymization network that provides 

network anonymization to TCP flows. Tor works by having the client to create a path 

through Tor hosts from the client to a server. Messages along this path are 

encapsulated into layers of encryption (like an onion) at the client, and each host along 

the path removes an encryption layer (like peeling an onion), which allows the current 

host to know the next host to forward the message. Once the final layer is decrypted, the 

last host delivers the message to its original destination [11]. 

Android applications can use Orbot to access a server in the Internet through a 

local proxy in the device, or can incorporate Orbot as a component within an 

application. In our current design, Orbot is used as a proxy. Orbot is open source and 

can be downloaded from the Google Play market. Orbot serves as part of the 

anonymization and communication layers of the PEAR architecture for MetroTrack. A 

screenshot of the Orbot client is shown in figure 5. 

5.1.2 MetroTrackTaskAgent 

The MetroTrackTaskAgent is used by the MetroTrack system to deliver 

participants’ information about new tasks issued in the system. The agent can also notify 

participants about updates on previously issued tasks. As shown in figure 4, MetroTrack 

TaskAgent uses Orbot to connect to the server components of MetroTrack. 

The agent retrieves notifications about new tasks available to participants from 

the MetroTrack server components. Since Orbot does not provide end-to-end security, 

the task agent must secure the requests before using Orbot. Transport Layer Security 

 



(TLS) security provides the security mechanism for the task agent. The MetroTask 

Agent is part of the processing layer of PEAR, with the security components of the task 

agent being part of the security and privacy layer of PEAR. Participants can download 

the task agent from the Google Play market. 

5.1.3 UserPrivacyManager 

Through this component, participants can configure their own privacy settings for 

SensingTasks. These privacy settings are implemented as privacy rules based on 

sensor and date/time data, and they can be implemented as simple rules (e.g., “don’t 

provide data to this task if close to a particular location”), or more complex con- textual 

rules based on activity recognition (e.g., “don’t provide data if sleeping”). This module is 

composed of subcomponents such as PrivacyPolicyManager which implements the 

rules, the ActivityRecognizer module which recognizes activities based on sensor data, 

and the PrivacyContentProvider which provides sensor data to tasks based on the 

decisions of the PrivacyPolicyManager. The SensorManager and LocationManager 

components are part of the Android API and provide information to the 

PrivacyPolicyManager subcomponent. 

The PrivacyContentProvider subcomponent provides raw data to a sensing task 

based on the decision of the privacy rules. In the cur- rent design, the 

UserPrivacyManager could be downloaded from Google Play. However, this module 

could become part of mobile operating systems as part of the privacy/security settings. 

5.1.4 SensingTask 

This component implements the collection of data for the task man- ager. Sensing 

tasks are downloaded from MetroTrack’s servers using Orbot. Each download has a 

unique identifier that is hardcoded when the SensingTask is compiled as an app ready 

to install. This design allows MetroTrack servers to authenticate the each of the task 

installations instead of authenticating participants. The rationale is that MetroTrack only 

needs to make sure that the data is coming from an authorized party, and this can be 

accomplished by hardcoding IDs into each download of the app. 



 

 

                                             

Figure 5. Orbot Android client.                                             Figure 6. PhotoPriv: A MetroTrack task. 

 

 
Figure 7. MetroTrack’s server components. 



Subcomponents of this module include: the DataCollectionModule which collects 

data from the UserPrivacyManager module and per- forms basic data analysis (e.g., 

feature extraction), the TaskPrivacyManager which implements privacy rules established 

by the task manager (and also includes mechanisms to show consents to participants), 

the DataSubmissionModule which prepares the data for submission, and the 

SecurityManager which manages authentication, session establishment, and end-to-

end encryption with the server. The SecurityManager may use the 

MetroTrackTaskAgent to check if the current task is still valid. The SecurityManager also 

utilizes the Orbot component to submit data to the MetroTrackServers. 

Figure 6 shows an example of a MetroTrack SensingTask called PhotoPriv. In 

this task, citizens are notified when people or objects of interest (e.g., stolen cars, hit and 

runs, amber alerts, thieves) are present in a location where a law enforcement agency 

may be attempting to locate by using crowdsensing. Contributors can use PhotoPriv to 

send anonymous geo-located photos that are uploaded with a message to law 

enforcement agencies. We used the NetCipher library in PhotoPriv to send data through 

the Orbot app to the server. 

5.2 MetroTrack’s Server Components 
The MetroTrack’s server consists of four major components, namely 

SensingTaskManager, DataStorage, DataAnalysis, and Ex- ternalPrivacyManager. 

Figure 6 shows the flow of data among these components. Our current design assumes 

that these components will execute in a Java EE application server (e.g., Glassfish 

server). 

5.2.1 SensingTaskManager 

This component handles the management of sensing tasks for MetroTrack’s 

mobile components. The SensingTaskManager is used by the task organizer to 

announce new SensingTask apps to participant’s devices. As mentioned in the previous 

section, each instance of a SensingTask downloaded by participants has its own 

identifier which allows it to be authenticated by MetroTrack servers. This is performed 

by having different compilations of the same Sensing- Task and offering these on 

demand. SensingTasks are meant to be lightweight, and a background process in the 

SensingTaskManager is constantly compiling and caching the SensingTasks. The 



SensingTaskManager component also provides the mechanisms to handle security, 

authentication and sets up privacy rules for SensingTasks.DataStorage 

This component abstracts the operations needed to store the data received by 

the SensingTaskManager into database systems. De- pending of the type of 

SensingTask, the data may be structured, unstructured, or a combination of both types 

of data. PostgreSQL, MySQL and other database management systems (or regular file 

systems) may be used to store data. 

5.2.2 DataAnalysis 

This component allows a task manager to perform inference, correlation, and data 

analysis based on the data received from Sensing- Tasks. This component can filter 

outliers, detect trends and pat- terns, and perform data analysis that could be only 

performed at the server. This module allows a task organizer to have a complete picture 

of the situation being studied. Task organizers may take measures such as preparing 

and releasing new tasks, or providing reports to third parties. 

5.2.3 ExternalPrivacyManager 

MetroTrack makes use of this component to handle privacy when data is shared 

with external systems or parties. The algorithms implemented in this module include 

mechanisms such as k-anonymity [37], l-diversity [25], t-closeness [23] to handle privacy 

for bulk data release (microdata release). For aggregated data, differential privacy 

mechanisms [12] may be used. 

5.3 Analysis of MetroTrack 
5.3.1 Evaluation of privacy goals in MetroTrack  

 MetroTrack system was designed to mitigate re-identification and contextual 

privacy attacks described in section 2.2. It achieves this by implementing privacy 

protection solutions through independent components at the mobile devices and the 

server which isolate the access to sensor data and provide the means for users to 

handle identifiable data. We summarize how the components in MetroTrack mitigate 

the various attacks in table 3. 

5.3.2 Tradeoff between privacy and estimation  

 Allowing participants to establish their own privacy rules may induce noise in 

the estimation performed by second-level integrators from first-level integrators’ sensor 



data. More research is needed to investigate the tradeoff between the participant’s 

privacy rules versus the information loss in the system [38]. 

 
Table 3. MetroTrack’s privacy mechanisms. 
Data collection process Privacy threat MetroTrack privacy mechanisms 

 
Task distribution 

 
Re-identification 

attacks 

 Use of Orbot client to hide network 
identifiers when a SensingTask is 
downloaded 

 Use of the SecurityManager in both the 
MetroTrackTaskAgent and in the 
SensingTask to encrypt data between 
mobile client and server 

 
 
 
 
 
Data collection 

 
Re-identification 

attacks 

 Use of the TaskPrivacyManager in the 
SensingTask module to implement data 
privacy algorithms (e.g., k-anonymity, l-
diversity) 

 
 
 

Contextual 
attacks 

 The SensingTask cannot access sensor 
data directly, but through the 
UserPrivacyManager (principle of 
compartmentalization) 

 Use of UserPrivacyManager to give options 
to users about which data to share with 
SensingTask 

 PrivacyPolicyManager component share 
data with the SensingTask 
based on user’s contextual rules 

 Use of the TaskPrivacyManager in the 
SensingTask module to implement data 
privacy algorithms (e.g., k-anonymity, l-
diversity) 

 
 
Data submission 

 
Re-identification 

attacks 

 Use of Orbot client to hide network 
identifiers when a SensingTask up- load 
data to the server 

 SecurityManager in both the 
MetroTrackTaskAgent and in the Sensing- 
Task to encrypt data between mobile client 
and server 

Contextual 
attacks 

 Use of TaskPrivacyManager in the 
SensingTask module to implement data 
privacy algorithms (e.g., k-anonymity, l-
diversity) 

 
 
 
Data analysis and sharing 

 
 
Re-identification 

attacks 

 Data are stored by using unique identifiers 
in each installation of a SensingTask to 
store and analyze data. No personal 
identifiable information is collected by the 
system from its users 

 The use of Tor does not allow the system to 



obtain network metadata (e.g., IP 
addresses) about the users submitting data 

 
Contextual 

attacks 

 Use of the ExternalPrivacyManager in the 
MetroTrack server module to implement 
data privacy algorithms (e.g., k-anonymity, l-
diversity, differential privacy) 

 
5.3.3 Tor as an anonymization network 

The utilization of Tor as the anonymization layer in MetroTrack does not allow to 
perform UDP transmission because Tor supports only TCP flows. UDP may be needed 
when a sensing task needs to deliver real-time sensor data to second-level integrators. 
As such, the evaluation of alternative solutions for providing anonymous network 
transfers from the point of view of privacy protection, quality of service and power 
consumption are needed. 

5.3.4 Layered architectural issues 
A layered architecture, as utilized in MetroTrack, may consume more power at 
first-level integrator devices than a cross-layer de- sign. Static wireless sensor 
network research has shown reduced power consumption of cross layer designs 
over layered designs. One possible solution to improve power consumption and 
at the same time enforce privacy is by using cloudlets [33] which are software 
modules that can be deployed in virtual machines in the cloud to offload 
processing from a mobile device. 

5.3.5 Choice of authentication mechanism 
The proposed authentication method requires multiple compilations for the same 

task because each of them will have its own hard- coded identification code. As such, the 
server may need additional storage as well as some type of background processing to 
keep enough compiled tasks available. In late 2016, it was found that the average 
Android app size is 15 MB [4]. Using 1TB SSD hard drive dedicated for this purpose 
could hold more than 6 million of these tasks. 

Assuming that it takes one minute to compile an Android app and that task 
organizers use only a single machine with only one core to compile for 24 hours, 1440 
tasks could be compiled per day. Suppose that the task organizer uses a computer with 
10 cores and enough RAM to compile tasks simultaneously, up to 10,000 tasks could 
be compiled per day. To deploy a sensing task that could be used by every resident in 
the New York metropolitan area (~20 mil- lion according to the 2015 US Census), a task 
organizer would need 100 machines working for 2 full days to generate enough sensing 
tasks for each habitant, which is feasible. 

6. CONCLUSION 
There has been a growing interest in the development of privacy- preserving 

architectures for crowdsensing systems in the last few years. To handle privacy issues 
when developing crowdsensing systems, this work has proposed the PEAR 
architecture. We described the components of the architecture and we presented a 
prototype system called MetroTrack. Finally, we evaluated MetroTrack and discussed 
future research issues that require further attention for the prototype system. 
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