113 research outputs found

    Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD

    Full text link
    Extending our previous work in the strictly parabolic case, we show that a linearly unstable Lax-type viscous shock solution of a general quasilinear hyperbolic--parabolic system of conservation laws possesses a translation-invariant center stable manifold within which it is nonlinearly orbitally stable with respect to small L1H3L^1\cap H^3 perturbations, converging time-asymptotically to a translate of the unperturbed wave. That is, for a shock with pp unstable eigenvalues, we establish conditional stability on a codimension-pp manifold of initial data, with sharp rates of decay in all LpL^p. For p=0p=0, we recover the result of unconditional stability obtained by Mascia and Zumbrun. The main new difficulty in the hyperbolic--parabolic case is to construct an invariant manifold in the absence of parabolic smoothing.Comment: 32p

    On a Navier-Stokes-Allen-Cahn model with inertial effects

    Full text link
    A mathematical model describing the flow of two-phase fluids in a bounded container Ω\Omega is considered under the assumption that the phase transition process is influenced by inertial effects. The model couples a variant of the Navier-Stokes system for the velocity uu with an Allen-Cahn-type equation for the order parameter φ\varphi relaxed in time in order to introduce inertia. The resulting model is characterized by second-order material derivatives which constitute the main difficulty in the mathematical analysis. Actually, in order to obtain a tractable problem, a viscous relaxation term is included in the phase equation. The mathematical results consist in existence of weak solutions in 3D and, under additional assumptions, existence and uniqueness of strong solutions in 2D. A partial characterization of the long-time behavior of solutions is also given and in particular some issues related to dissipation of energy are discussed.Comment: 24 page

    Nonlinear Evolution Equations: Analysis and Numerics

    Get PDF
    The qualitative theory of nonlinear evolution equations is an important tool for studying the dynamical behavior of systems in science and technology. A thorough understanding of the complex behavior of such systems requires detailed analytical and numerical investigations of the underlying partial differential equations

    Absorbing boundary conditions for the Westervelt equation

    Full text link
    The focus of this work is on the construction of a family of nonlinear absorbing boundary conditions for the Westervelt equation in one and two space dimensions. The principal ingredient used in the design of such conditions is pseudo-differential calculus. This approach enables to develop high order boundary conditions in a consistent way which are typically more accurate than their low order analogs. Under the hypothesis of small initial data, we establish local well-posedness for the Westervelt equation with the absorbing boundary conditions. The performed numerical experiments illustrate the efficiency of the proposed boundary conditions for different regimes of wave propagation

    An energy-based discontinuous Galerkin method for the nonlinear Schr\"odinger equation with wave operator

    Full text link
    This work develops an energy-based discontinuous Galerkin (EDG) method for the nonlinear Schr\"odinger equation with the wave operator. The focus of the study is on the energy-conserving or energy-dissipating behavior of the method with some simple mesh-independent numerical fluxes we designed. We establish error estimates in the energy norm that require careful selection of a test function for the auxiliary equation involving the time derivative of the displacement variable. A critical part of the convergence analysis is to establish the L2 error bounds for the time derivative of the approximation error in the displacement variable by using the equation that determines its mean value. Using a specially chosen test function, we show that one can create a linear system for the time evolution of the unknowns even when dealing with nonlinear properties in the original problem. Extensive numerical experiments are provided to demonstrate the optimal convergence of the scheme in the L2 norm with our choices of the numerical flux

    Small Collaboration: Numerical Analysis of Electromagnetic Problems (hybrid meeting)

    Get PDF
    The classical theory of electromagnetism describes the interaction of electrically charged particles through electromagnetic forces, which are carried by the electric and magnetic fields. The propagation of the electromagnetic fields can be described by Maxwell's equations. Solving Maxwell's equations numerically is a challenging problem which appears in many different technical applications. Difficulties arise for instance from material interfaces or if the geometrical features are much larger than or much smaller than a typical wavelength. The spatial discretization needs to combine good geometrical flexibility with a relatively high order of accuracy. The aim of this small-scale, week-long interactive mini-workshop jointly organized by the University of Duisburg-Essen and the University of Twente, and kindly hosted at the MFO, is to bring together experts in non-standard and mixed finite elements methods with experts in the field of electromagnetism
    corecore