240 research outputs found

    OPTIMIZING LARGE COMBINATIONAL NETWORKS FOR K-LUT BASED FPGA MAPPING

    Get PDF
    Optimizing by partitioning is a central problem in VLSI design automation, addressing circuit’s manufacturability. Circuit partitioning has multiple applications in VLSI design. One of the most common is that of dividing combinational circuits (usually large ones) that will not fit on a single package among a number of packages. Partitioning is of practical importance for k-LUT based FPGA circuit implementation. In this work is presented multilevel a multi-resource partitioning algorithm for partitioning large combinational circuits in order to efficiently use existing and commercially available FPGAs packagestwo-way partitioning, multi-way partitioning, recursive partitioning, flat partitioning, critical path, cutting cones, bottom-up clusters, top-down min-cut

    FGPGA: An Efficient Genetic Approach for Producing Feasible Graph Partitions

    Full text link
    Graph partitioning, a well studied problem of parallel computing has many applications in diversified fields such as distributed computing, social network analysis, data mining and many other domains. In this paper, we introduce FGPGA, an efficient genetic approach for producing feasible graph partitions. Our method takes into account the heterogeneity and capacity constraints of the partitions to ensure balanced partitioning. Such approach has various applications in mobile cloud computing that include feasible deployment of software applications on the more resourceful infrastructure in the cloud instead of mobile hand set. Our proposed approach is light weight and hence suitable for use in cloud architecture. We ensure feasibility of the partitions generated by not allowing over-sized partitions to be generated during the initialization and search. Our proposed method tested on standard benchmark datasets significantly outperforms the state-of-the-art methods in terms of quality of partitions and feasibility of the solutions.Comment: Accepted in the 1st International Conference on Networking Systems and Security 2015 (NSysS 2015

    Simulated Annealing Approach onto VLSI Circuit Partitioning

    Get PDF
    Decompositions of inter-connected components, to achieve modular independence, poses the major problem in VLSI circuit partitioning. This problem is intractable in nature, Solutions of these problems in computational science is possible through appropriate heuristics. Reduction of the cost that occurs due to interconnectivity between several VLSI components is referred to in this paper. Modification of results derived by classical iterative procedures with probabilistic methods is attempted. Verification has been done on ISCAS-85 benchmark circuits. The proposed design tool shows remarkable improvement results in comparison to the traditional one when applied to the standard benchmark circuits like ISCAS-85

    A High-Performance Triple Patterning Layout Decomposer with Balanced Density

    Full text link
    Triple patterning lithography (TPL) has received more and more attentions from industry as one of the leading candidate for 14nm/11nm nodes. In this paper, we propose a high performance layout decomposer for TPL. Density balancing is seamlessly integrated into all key steps in our TPL layout decomposition, including density-balanced semi-definite programming (SDP), density-based mapping, and density-balanced graph simplification. Our new TPL decomposer can obtain high performance even compared to previous state-of-the-art layout decomposers which are not balanced-density aware, e.g., by Yu et al. (ICCAD'11), Fang et al. (DAC'12), and Kuang et al. (DAC'13). Furthermore, the balanced-density version of our decomposer can provide more balanced density which leads to less edge placement error (EPE), while the conflict and stitch numbers are still very comparable to our non-balanced-density baseline

    Beyond pairwise clustering

    Get PDF
    We consider the problem of clustering in domains where the affinity relations are not dyadic (pairwise), but rather triadic, tetradic or higher. The problem is an instance of the hypergraph partitioning problem. We propose a two-step algorithm for solving this problem. In the first step we use a novel scheme to approximate the hypergraph using a weighted graph. In the second step a spectral partitioning algorithm is used to partition the vertices of this graph. The algorithm is capable of handling hyperedges of all orders including order two, thus incorporating information of all orders simultaneously. We present a theoretical analysis that relates our algorithm to an existing hypergraph partitioning algorithm and explain the reasons for its superior performance. We report the performance of our algorithm on a variety of computer vision problems and compare it to several existing hypergraph partitioning algorithms
    corecore