9,406 research outputs found

    Manifold Optimization Over the Set of Doubly Stochastic Matrices: A Second-Order Geometry

    Get PDF
    Convex optimization is a well-established research area with applications in almost all fields. Over the decades, multiple approaches have been proposed to solve convex programs. The development of interior-point methods allowed solving a more general set of convex programs known as semi-definite programs and second-order cone programs. However, it has been established that these methods are excessively slow for high dimensions, i.e., they suffer from the curse of dimensionality. On the other hand, optimization algorithms on manifold have shown great ability in finding solutions to nonconvex problems in reasonable time. This paper is interested in solving a subset of convex optimization using a different approach. The main idea behind Riemannian optimization is to view the constrained optimization problem as an unconstrained one over a restricted search space. The paper introduces three manifolds to solve convex programs under particular box constraints. The manifolds, called the doubly stochastic, symmetric and the definite multinomial manifolds, generalize the simplex also known as the multinomial manifold. The proposed manifolds and algorithms are well-adapted to solving convex programs in which the variable of interest is a multidimensional probability distribution function. Theoretical analysis and simulation results testify the efficiency of the proposed method over state of the art methods. In particular, they reveal that the proposed framework outperforms conventional generic and specialized solvers, especially in high dimensions

    Causal Inference by Stochastic Complexity

    Full text link
    The algorithmic Markov condition states that the most likely causal direction between two random variables X and Y can be identified as that direction with the lowest Kolmogorov complexity. Due to the halting problem, however, this notion is not computable. We hence propose to do causal inference by stochastic complexity. That is, we propose to approximate Kolmogorov complexity via the Minimum Description Length (MDL) principle, using a score that is mini-max optimal with regard to the model class under consideration. This means that even in an adversarial setting, such as when the true distribution is not in this class, we still obtain the optimal encoding for the data relative to the class. We instantiate this framework, which we call CISC, for pairs of univariate discrete variables, using the class of multinomial distributions. Experiments show that CISC is highly accurate on synthetic, benchmark, as well as real-world data, outperforming the state of the art by a margin, and scales extremely well with regard to sample and domain sizes

    Hybrid Deterministic-Stochastic Methods for Data Fitting

    Full text link
    Many structured data-fitting applications require the solution of an optimization problem involving a sum over a potentially large number of measurements. Incremental gradient algorithms offer inexpensive iterations by sampling a subset of the terms in the sum. These methods can make great progress initially, but often slow as they approach a solution. In contrast, full-gradient methods achieve steady convergence at the expense of evaluating the full objective and gradient on each iteration. We explore hybrid methods that exhibit the benefits of both approaches. Rate-of-convergence analysis shows that by controlling the sample size in an incremental gradient algorithm, it is possible to maintain the steady convergence rates of full-gradient methods. We detail a practical quasi-Newton implementation based on this approach. Numerical experiments illustrate its potential benefits.Comment: 26 pages. Revised proofs of Theorems 2.6 and 3.1, results unchange

    A Scalable Asynchronous Distributed Algorithm for Topic Modeling

    Full text link
    Learning meaningful topic models with massive document collections which contain millions of documents and billions of tokens is challenging because of two reasons: First, one needs to deal with a large number of topics (typically in the order of thousands). Second, one needs a scalable and efficient way of distributing the computation across multiple machines. In this paper we present a novel algorithm F+Nomad LDA which simultaneously tackles both these problems. In order to handle large number of topics we use an appropriately modified Fenwick tree. This data structure allows us to sample from a multinomial distribution over TT items in O(logT)O(\log T) time. Moreover, when topic counts change the data structure can be updated in O(logT)O(\log T) time. In order to distribute the computation across multiple processor we present a novel asynchronous framework inspired by the Nomad algorithm of \cite{YunYuHsietal13}. We show that F+Nomad LDA significantly outperform state-of-the-art on massive problems which involve millions of documents, billions of words, and thousands of topics
    corecore