19,935 research outputs found

    Recursive Estimation of Camera Motion from Uncalibrated Image Sequences

    Get PDF
    In This memo we present an extension of the motion estimation scheme presented in a previous CDS technical report [14, 16], in order to deal with image sequences coming from an uncalibrated camera. The scheme is based on some results in epipolar geometry and invariant theory which can be found in [6]. Experiments are performed on noisy synthetic images

    Hierarchical structure-and-motion recovery from uncalibrated images

    Full text link
    This paper addresses the structure-and-motion problem, that requires to find camera motion and 3D struc- ture from point matches. A new pipeline, dubbed Samantha, is presented, that departs from the prevailing sequential paradigm and embraces instead a hierarchical approach. This method has several advantages, like a provably lower computational complexity, which is necessary to achieve true scalability, and better error containment, leading to more stability and less drift. Moreover, a practical autocalibration procedure allows to process images without ancillary information. Experiments with real data assess the accuracy and the computational efficiency of the method.Comment: Accepted for publication in CVI

    Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes

    Full text link
    In this paper we address the problem of multiple camera calibration in the presence of a homogeneous scene, and without the possibility of employing calibration object based methods. The proposed solution exploits salient features present in a larger field of view, but instead of employing active vision we replace the cameras with stereo rigs featuring a long focal analysis camera, as well as a short focal registration camera. Thus, we are able to propose an accurate solution which does not require intrinsic variation models as in the case of zooming cameras. Moreover, the availability of the two views simultaneously in each rig allows for pose re-estimation between rigs as often as necessary. The algorithm has been successfully validated in an indoor setting, as well as on a difficult scene featuring a highly dense pilgrim crowd in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application

    Recursive estimation of camera motion from uncalibrated image sequences

    Get PDF
    We describe a method for estimating the motion and structure of a scene from a sequence of images taken with a camera whose geometric calibration parameters are unknown. The scheme is based upon a recursive motion estimation scheme, called the “essential filter”, extended according to the epipolar geometric representation presented by Faugeras, Luong, and Maybank (see Proc. of the ECCV92, vol.588 of LNCS, Springer Verlag, 1992) in order to estimate the calibration parameters as well. The motion estimates can then be fed into any “structure from motion” module that processes motion error, in order to recover the structure of the scene

    Beyond Gr\"obner Bases: Basis Selection for Minimal Solvers

    Full text link
    Many computer vision applications require robust estimation of the underlying geometry, in terms of camera motion and 3D structure of the scene. These robust methods often rely on running minimal solvers in a RANSAC framework. In this paper we show how we can make polynomial solvers based on the action matrix method faster, by careful selection of the monomial bases. These monomial bases have traditionally been based on a Gr\"obner basis for the polynomial ideal. Here we describe how we can enumerate all such bases in an efficient way. We also show that going beyond Gr\"obner bases leads to more efficient solvers in many cases. We present a novel basis sampling scheme that we evaluate on a number of problems
    • 

    corecore