484 research outputs found

    Refinement of the Equilibrium of Public Goods Games over Networks: Efficiency and Effort of Specialized Equilibria

    Get PDF
    Recently Bramoulle and Kranton presented a model for the provision of public goods over a network and showed the existence of a class of Nash equilibria called specialized equilibria wherein some agents exert maximum effort while other agents free ride. We examine the efficiency, effort and cost of specialized equilibria in comparison to other equilibria. Our main results show that the welfare of a particular specialized equilibrium approaches the maximum welfare amongst all equilibria as the concavity of the benefit function tends to unity. For forest networks a similar result also holds as the concavity approaches zero. Moreover, without any such concavity conditions, there exists for any network a specialized equilibrium that requires the maximum weighted effort amongst all equilibria. When the network is a forest, a specialized equilibrium also incurs the minimum total cost amongst all equilibria. For well-covered forest networks we show that all welfare maximizing equilibria are specialized and all equilibria incur the same total cost. Thus we argue that specialized equilibria may be considered as a refinement of the equilibrium of the public goods game. We show several results on the structure and efficiency of equilibria that highlight the role of dependants in the network

    Subject index volumes 1–92

    Get PDF

    Subject Index Volumes 1–200

    Get PDF

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Mixed-integer Nonlinear Optimization: a hatchery for modern mathematics

    Get PDF
    The second MFO Oberwolfach Workshop on Mixed-Integer Nonlinear Programming (MINLP) took place between 2nd and 8th June 2019. MINLP refers to one of the hardest Mathematical Programming (MP) problem classes, involving both nonlinear functions as well as continuous and integer decision variables. MP is a formal language for describing optimization problems, and is traditionally part of Operations Research (OR), which is itself at the intersection of mathematics, computer science, engineering and econometrics. The scientific program has covered the three announced areas (hierarchies of approximation, mixed-integer nonlinear optimal control, and dealing with uncertainties) with a variety of tutorials, talks, short research announcements, and a special "open problems'' session
    • …
    corecore