3,107 research outputs found

    Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time

    Full text link
    It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in terms of the weights). We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms, also for weighted and counting versions. For example, in this time we can solve the traveling salesman problem or count the number of Hamiltonian cycles. The rank-based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the matrix tree theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page

    Approximately Sampling Elements with Fixed Rank in Graded Posets

    Full text link
    Graded posets frequently arise throughout combinatorics, where it is natural to try to count the number of elements of a fixed rank. These counting problems are often #P\#\textbf{P}-complete, so we consider approximation algorithms for counting and uniform sampling. We show that for certain classes of posets, biased Markov chains that walk along edges of their Hasse diagrams allow us to approximately generate samples with any fixed rank in expected polynomial time. Our arguments do not rely on the typical proofs of log-concavity, which are used to construct a stationary distribution with a specific mode in order to give a lower bound on the probability of outputting an element of the desired rank. Instead, we infer this directly from bounds on the mixing time of the chains through a method we call balanced bias\textit{balanced bias}. A noteworthy application of our method is sampling restricted classes of integer partitions of nn. We give the first provably efficient Markov chain algorithm to uniformly sample integer partitions of nn from general restricted classes. Several observations allow us to improve the efficiency of this chain to require O(n1/2log(n))O(n^{1/2}\log(n)) space, and for unrestricted integer partitions, expected O(n9/4)O(n^{9/4}) time. Related applications include sampling permutations with a fixed number of inversions and lozenge tilings on the triangular lattice with a fixed average height.Comment: 23 pages, 12 figure

    Instanton Expansion of Noncommutative Gauge Theory in Two Dimensions

    Full text link
    We show that noncommutative gauge theory in two dimensions is an exactly solvable model. A cohomological formulation of gauge theory defined on the noncommutative torus is used to show that its quantum partition function can be written as a sum over contributions from classical solutions. We derive an explicit formula for the partition function of Yang-Mills theory defined on a projective module for arbitrary noncommutativity parameter \theta which is manifestly invariant under gauge Morita equivalence. The energy observables are shown to be smooth functions of \theta. The construction of noncommutative instanton contributions to the path integral is described in some detail. In general, there are infinitely many gauge inequivalent contributions of fixed topological charge, along with a finite number of quantum fluctuations about each instanton. The associated moduli spaces are combinations of symmetric products of an ordinary two-torus whose orbifold singularities are not resolved by noncommutativity. In particular, the weak coupling limit of the gauge theory is independent of \theta and computes the symplectic volume of the moduli space of constant curvature connections on the noncommutative torus.Comment: 52 pages LaTeX, 1 eps figure, uses espf. V2: References added and repaired; V3: Typos corrected, some clarifying explanations added; version to be published in Communications in Mathematical Physic

    Convex Rank Tests and Semigraphoids

    Get PDF
    Convex rank tests are partitions of the symmetric group which have desirable geometric properties. The statistical tests defined by such partitions involve counting all permutations in the equivalence classes. Each class consists of the linear extensions of a partially ordered set specified by data. Our methods refine existing rank tests of non-parametric statistics, such as the sign test and the runs test, and are useful for exploratory analysis of ordinal data. We establish a bijection between convex rank tests and probabilistic conditional independence structures known as semigraphoids. The subclass of submodular rank tests is derived from faces of the cone of submodular functions, or from Minkowski summands of the permutohedron. We enumerate all small instances of such rank tests. Of particular interest are graphical tests, which correspond to both graphical models and to graph associahedra

    On the diagram of 132-avoiding permutations

    Get PDF
    The diagram of a 132-avoiding permutation can easily be characterized: it is simply the diagram of a partition. Based on this fact, we present a new bijection between 132-avoiding and 321-avoiding permutations. We will show that this bijection translates the correspondences between these permutations and Dyck paths given by Krattenthaler and by Billey-Jockusch-Stanley, respectively, to each other. Moreover, the diagram approach yields simple proofs for some enumerative results concerning forbidden patterns in 132-avoiding permutations.Comment: 20 pages; additional reference is adde
    corecore