11,934 research outputs found

    Optimal local estimates of visual motion in a natural environment

    Full text link
    Many organisms, from flies to humans, use visual signals to estimate their motion through the world. To explore the motion estimation problem, we have constructed a camera/gyroscope system that allows us to sample, at high temporal resolution, the joint distribution of input images and rotational motions during a long walk in the woods. From these data we construct the optimal estimator of velocity based on spatial and temporal derivatives of image intensity in small patches of the visual world. Over the bulk of the naturally occurring dynamic range, the optimal estimator exhibits the same systematic errors seen in neural and behavioral responses, including the confounding of velocity and contrast. These results suggest that apparent errors of sensory processing may reflect an optimal response to the physical signals in the environment

    A theory for the alignment of cortical feature maps during\ud development

    Get PDF
    We present a developmental model of ocular dominance column formation that takes into account the existence of an array of intrinsically specified cytochrome oxidase blobs. We assume that there is some molecular substrate for the blobs early in development, which generates a spatially periodic modulation of experience–dependent plasticity. We determine the effects of such a modulation on a competitive Hebbian mechanism for the modification of the feedforward afferents from the left and right eyes. We show how alternating left and right eye dominated columns can develop, in which the blobs are aligned with the centers of the ocular dominance columns and receive a greater density of feedforward connections, thus becoming defined extrinsically. More generally, our results suggest that the presence of periodically distributed anatomical markers early in development could provide a mechanism for the alignment of cortical feature maps

    Liquid-phase hydrogenation of bio-refined succinic acid to 1,4-butanediol using bimetallic catalysts

    Get PDF
    open access articleDevelopment of a Crotalaria juncea based biorefinery produce large quantity of waste glycerol after trans-esterification of the juncea seeds. This glycerol, after purification, is used as a substrate for producing succinic acid on a microbial route. Hydrogenation of this bio-refined succinic acid is carried out under high pressure in order to produce 1,4- butanediol (BDO) using a batch slurry reactor with cobalt supported ruthenium bimetallic catalysts, synthesized inhouse. It is demonstrated that, using small amounts of ruthenium to cobalt increases the overall hydrogenation activity for the production of 1,4-butanediol. Hydrogenation reactions are carried out at various operating temperatures and pressures along with changes in the mixing ratios of ruthenium chloride and cobalt chloride hexahydrate, which are used to synthesize the catalyst. The Ru-Co bimetallic catalysts are characterized by XRD, FE-SEM and TGA. Concentrations of the hydrogenation product are analyzed using Gas chromatography-Mass spectrometry (GC-MS). Statistical analysis of the overall hydrogenation process is performed using a Box-Behnken Design (BBD)

    Subcellular mapping of dendritic activity in optic flow processing neurons

    Get PDF
    Dendritic integration is a fundamental element of neuronal information processing. So far, few studies have provided a detailed picture of this process, describing the properties of local dendritic activity and its subcellular organization. Here, I used 2-photon calcium imaging in optic flow processing neurons of the blowfly Calliphora vicina to determine the preferred location and direction of local motion cues for small branchlets throughout the entire dendrite. I found a pronounced retinotopic mapping on both the subcellular and the cell population level. In addition, dendritic branchlets residing in different layers of the neuropil were tuned to distinct directions of motion. Within one layer, local preferred directions varied according to the deflections of the ommatidial lattice. Summing the local receptive fields of all dendritic branchlets reproduced the characteristic properties of these neurons’ axonal output receptive fields. These results corroborate the notion that the dendritic morphology of vertical system cells allows them to selectively collect local motion inputs with particular directional preferences from a spatially organized input repertoire, thus forming filters that match global patterns of optic flow. These data illustrate a highly structured circuit organization as an efficient way to hard-wire a complex sensory task
    • …
    corecore