3 research outputs found

    Algorithm to layout (ATL) systems for VLSI design

    Get PDF
    PhD ThesisThe complexities involved in custom VLSI design together with the failure of CAD techniques to keep pace with advances in the fabrication technology have resulted in a design bottleneck. Powerful tools are required to exploit the processing potential offered by the densities now available. Describing a system in a high level algorithmic notation makes writing, understanding, modification, and verification of a design description easier. It also removes some of the emphasis on the physical issues of VLSI design, and focus attention on formulating a correct and well structured design. This thesis examines how current trends in CAD techniques might influence the evolution of advanced Algorithm To Layout (ATL) systems. The envisaged features of an example system are specified. Particular attention is given to the implementation of one its features COPTS (Compilation Of Occam Programs To Schematics). COPTS is capable of generating schematic diagrams from which an actual layout can be derived. It takes a description written in a subset of Occam and generates a high level schematic diagram depicting its realisation as a VLSI system. This diagram provides the designer with feedback on the relative placement and interconnection of the operators used in the source code. It also gives a visual representation of the parallelism defined in the Occam description. Such diagrams are a valuable aid in documenting the implementation of a design. Occam has also been selected as the input to the design system that COPTS is a feature of. The choice of Occam was made on the assumption that the most appropriate algorithmic notation for such a design system will be a suitable high level programming language. This is in contrast to current automated VLSI design systems, which typically use a hardware des~ription language for input. These special purpose languages currently concentrate on handling structural/behavioural information and have limited ability to express algorithms. Using a language such as Occam allows a designer to write a behavioural description which can be compiled and executed as a simulator, or prototype, of the system. The programmability introduced into the design process enables designers to concentrate on a design's underlying algorithm. The choice of this algorithm is the most crucial decision since it determines the performance and area of the silicon implementation. The thesis is divided into four sections, each of several chapters. The first section considers VLSI design complexity, compares the expert systems and silicon compilation approaches to tackling it, and examines its parallels with software complexity. The second section reviews the advantages of using a conventional programming language for VLSI system descriptions. A number of alternative high level programming languages are considered for application in VLSI design. The third section defines the overall ATL system COPTS is envisaged to be part of, and considers the schematic representation of Occam programs. The final section presents a summary of the overall project and suggestions for future work on realising the full ATL system

    Behavioural specification and simulation of minimum configuration computer systems.

    Get PDF
    The ultimate goal of Computer-Aided Design research in the area of digital circuits is the automatic synthesis of a complete solution from a behavioural specification. This thesis describes an attempt to attain this ideal in the more limited realm of designing single-board control systems, constructed from general-purpose microprocessor components. The difficulties currently encountered in designing and implementing microprocessor control systems are outlined, and the architecture of an integrated, knowledge-based design system is proposed as a method of overcoming these difficulties. The design system encompasses both behavioural and structural design functions. However, only the tools and techniques required to fulfil the behavioural design functions are considered in detail in this project.A review of previous work in the field of automated digital circuit design and software and hardware specification languages is presented. The major features of a novel language for specifying and simulating control system behaviour are then described, together with an intermediate design description notation, which facilitates the generation of microprocessor assembly language code directly from behavioural specifications. The design and implementation of a fast, generalised microprocessor simulation facility constructed from transputers is discussed, and its performance potential analysed. The simulation facility enables the complete design for a given application to be tested, before any actual hardware construction takes place. Finally, an evaluation of the behavioural specification, synthesis and simulation techniques developed in this project is presented, and the benefits perceived from adopting such techniques are summarised. Issues concerning the integration of these techniques with the knowledge-based structural design tools are also dealt with, and suggestions for further developments and enhancements are identified
    corecore