7,396 research outputs found

    An iterative initial-points refinement algorithm for categorical data clustering

    Get PDF
    The original k-means clustering algorithm is designed to work primarily on numeric data sets. This prohibits the algorithm from being directly applied to categorical data clustering in many data mining applications. The k-modes algorithm [Z. Huang, Clustering large data sets with mixed numeric and categorical value, in: Proceedings of the First Pacific Asia Knowledge Discovery and Data Mining Conference. World Scientific, Singapore, 1997, pp. 21–34] extended the k-means paradigm to cluster categorical data by using a frequency-based method to update the cluster modes versus the k-means fashion of minimizing a numerically valued cost. However, as is the case with most data clustering algorithms, the algorithm requires a pre-setting or random selection of initial points (modes) of the clusters. The differences on the initial points often lead to considerable distinct cluster results. In this paper we present an experimental study on applying Bradley and Fayyad\u27s iterative initial-point refinement algorithm to the k-modes clustering to improve the accurate and repetitiveness of the clustering results [cf. P. Bradley, U. Fayyad, Refining initial points for k-mean clustering, in: Proceedings of the 15th International Conference on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1998]. Experiments show that the k-modes clustering algorithm using refined initial points leads to higher precision results much more reliably than the random selection method without refinement, thus making the refinement process applicable to many data mining applications with categorical data

    A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs

    Full text link
    Representing the reservoir as a network of discrete compartments with neighbor and non-neighbor connections is a fast, yet accurate method for analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale compartments with distinct static and dynamic properties is an integral part of such high-level reservoir analysis. In this work, we present a hybrid framework specific to reservoir analysis for an automatic detection of clusters in space using spatial and temporal field data, coupled with a physics-based multiscale modeling approach. In this work a novel hybrid approach is presented in which we couple a physics-based non-local modeling framework with data-driven clustering techniques to provide a fast and accurate multiscale modeling of compartmentalized reservoirs. This research also adds to the literature by presenting a comprehensive work on spatio-temporal clustering for reservoir studies applications that well considers the clustering complexities, the intrinsic sparse and noisy nature of the data, and the interpretability of the outcome. Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin
    • …
    corecore