3 research outputs found

    Subband Image Coding with Jointly Optimized Quantizers

    Get PDF
    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional

    A Subband Coding Method for HDTV

    Get PDF
    This paper introduces a new HDTV coder based on motion compensation, subband coding, and high order conditional entropy coding. The proposed coder exploits the temporal and spatial statistical dependencies inherent in the HDTV signal by using intra- and inter-subband conditioning for coding both the motion coordinates and the residual signal. The new framework provides an easy way to control the system complexity and performance, and inherently supports multiresolution transmission. Experimental results show that the coder outperforms MPEG-2, while still maintaining relatively low complexity

    Medical Image Compression Using a New Subband Coding Method

    Get PDF
    A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is generalized and applied to medical image compression. In particular, the corresponding subband coder is used to encode Computed Tomography (CT) axial slice head images, where statistical dependencies between neighboring image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression performance. The subband coder features many advantages such as relatively low complexity and operation over a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder is relatively good, both objectively and subjectively
    corecore