73,257 research outputs found

    Joint Video and Text Parsing for Understanding Events and Answering Queries

    Full text link
    We propose a framework for parsing video and text jointly for understanding events and answering user queries. Our framework produces a parse graph that represents the compositional structures of spatial information (objects and scenes), temporal information (actions and events) and causal information (causalities between events and fluents) in the video and text. The knowledge representation of our framework is based on a spatial-temporal-causal And-Or graph (S/T/C-AOG), which jointly models possible hierarchical compositions of objects, scenes and events as well as their interactions and mutual contexts, and specifies the prior probabilistic distribution of the parse graphs. We present a probabilistic generative model for joint parsing that captures the relations between the input video/text, their corresponding parse graphs and the joint parse graph. Based on the probabilistic model, we propose a joint parsing system consisting of three modules: video parsing, text parsing and joint inference. Video parsing and text parsing produce two parse graphs from the input video and text respectively. The joint inference module produces a joint parse graph by performing matching, deduction and revision on the video and text parse graphs. The proposed framework has the following objectives: Firstly, we aim at deep semantic parsing of video and text that goes beyond the traditional bag-of-words approaches; Secondly, we perform parsing and reasoning across the spatial, temporal and causal dimensions based on the joint S/T/C-AOG representation; Thirdly, we show that deep joint parsing facilitates subsequent applications such as generating narrative text descriptions and answering queries in the forms of who, what, when, where and why. We empirically evaluated our system based on comparison against ground-truth as well as accuracy of query answering and obtained satisfactory results

    Improving Semantic Embedding Consistency by Metric Learning for Zero-Shot Classification

    Full text link
    This paper addresses the task of zero-shot image classification. The key contribution of the proposed approach is to control the semantic embedding of images -- one of the main ingredients of zero-shot learning -- by formulating it as a metric learning problem. The optimized empirical criterion associates two types of sub-task constraints: metric discriminating capacity and accurate attribute prediction. This results in a novel expression of zero-shot learning not requiring the notion of class in the training phase: only pairs of image/attributes, augmented with a consistency indicator, are given as ground truth. At test time, the learned model can predict the consistency of a test image with a given set of attributes , allowing flexible ways to produce recognition inferences. Despite its simplicity, the proposed approach gives state-of-the-art results on four challenging datasets used for zero-shot recognition evaluation.Comment: in ECCV 2016, Oct 2016, amsterdam, Netherlands. 201

    Automatic Discovery, Association Estimation and Learning of Semantic Attributes for a Thousand Categories

    Full text link
    Attribute-based recognition models, due to their impressive performance and their ability to generalize well on novel categories, have been widely adopted for many computer vision applications. However, usually both the attribute vocabulary and the class-attribute associations have to be provided manually by domain experts or large number of annotators. This is very costly and not necessarily optimal regarding recognition performance, and most importantly, it limits the applicability of attribute-based models to large scale data sets. To tackle this problem, we propose an end-to-end unsupervised attribute learning approach. We utilize online text corpora to automatically discover a salient and discriminative vocabulary that correlates well with the human concept of semantic attributes. Moreover, we propose a deep convolutional model to optimize class-attribute associations with a linguistic prior that accounts for noise and missing data in text. In a thorough evaluation on ImageNet, we demonstrate that our model is able to efficiently discover and learn semantic attributes at a large scale. Furthermore, we demonstrate that our model outperforms the state-of-the-art in zero-shot learning on three data sets: ImageNet, Animals with Attributes and aPascal/aYahoo. Finally, we enable attribute-based learning on ImageNet and will share the attributes and associations for future research.Comment: Accepted as a conference paper at CVPR 201

    Weakly Supervised Learning of Objects, Attributes and Their Associations

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-10605-2_31]”
    • …
    corecore