776 research outputs found

    A joint separation-classification model for sound event detection of weakly labelled data

    Get PDF
    Source separation (SS) aims to separate individual sources from an audio recording. Sound event detection (SED) aims to detect sound events from an audio recording. We propose a joint separation-classification (JSC) model trained only on weakly labelled audio data, that is, only the tags of an audio recording are known but the time of the events are unknown. First, we propose a separation mapping from the time-frequency (T-F) representation of an audio to the T-F segmentation masks of the audio events. Second, a classification mapping is built from each T-F segmentation mask to the presence probability of each audio event. In the source separation stage, sources of audio events and time of sound events can be obtained from the T-F segmentation masks. The proposed method achieves an equal error rate (EER) of 0.14 in SED, outperforming deep neural network baseline of 0.29. Source separation SDR of 8.08 dB is obtained by using global weighted rank pooling (GWRP) as probability mapping, outperforming the global max pooling (GMP) based probability mapping giving SDR at 0.03 dB. Source code of our work is published.Comment: Accepted by ICASSP 201

    Surrey-cvssp system for DCASE2017 challenge task4

    Get PDF
    In this technique report, we present a bunch of methods for the task 4 of Detection and Classification of Acoustic Scenes and Events 2017 (DCASE2017) challenge. This task evaluates systems for the large-scale detection of sound events using weakly labeled training data. The data are YouTube video excerpts focusing on transportation and warnings due to their industry applications. There are two tasks, audio tagging and sound event detection from weakly labeled data. Convolutional neural network (CNN) and gated recurrent unit (GRU) based recurrent neural network (RNN) are adopted as our basic framework. We proposed a learnable gating activation function for selecting informative local features. Attention-based scheme is used for localizing the specific events in a weakly-supervised mode. A new batch-level balancing strategy is also proposed to tackle the data unbalancing problem. Fusion of posteriors from different systems are found effective to improve the performance. In a summary, we get 61% F-value for the audio tagging subtask and 0.73 error rate (ER) for the sound event detection subtask on the development set. While the official multilayer perceptron (MLP) based baseline just obtained 13.1% F-value for the audio tagging and 1.02 for the sound event detection.Comment: DCASE2017 challenge ranked 1st system, task4, tech repor

    Audio Set classification with attention model: A probabilistic perspective

    Get PDF
    This paper investigates the classification of the Audio Set dataset. Audio Set is a large scale weakly labelled dataset of sound clips. Previous work used multiple instance learning (MIL) to classify weakly labelled data. In MIL, a bag consists of several instances, and a bag is labelled positive if at least one instances in the audio clip is positive. A bag is labelled negative if all the instances in the bag are negative. We propose an attention model to tackle the MIL problem and explain this attention model from a novel probabilistic perspective. We define a probability space on each bag, where each instance in the bag has a trainable probability measure for each class. Then the classification of a bag is the expectation of the classification output of the instances in the bag with respect to the learned probability measure. Experimental results show that our proposed attention model modeled by fully connected deep neural network obtains mAP of 0.327 on Audio Set dataset, outperforming the Google's baseline of 0.314 and recurrent neural network of 0.325.Comment: Accepted by ICASSP 201

    Large-scale weakly supervised audio classification using gated convolutional neural network

    Get PDF
    In this paper, we present a gated convolutional neural network and a temporal attention-based localization method for audio classification, which won the 1st place in the large-scale weakly supervised sound event detection task of Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 challenge. The audio clips in this task, which are extracted from YouTube videos, are manually labeled with one or a few audio tags but without timestamps of the audio events, which is called as weakly labeled data. Two sub-tasks are defined in this challenge including audio tagging and sound event detection using this weakly labeled data. A convolutional recurrent neural network (CRNN) with learnable gated linear units (GLUs) non-linearity applied on the log Mel spectrogram is proposed. In addition, a temporal attention method is proposed along the frames to predicate the locations of each audio event in a chunk from the weakly labeled data. We ranked the 1st and the 2nd as a team in these two sub-tasks of DCASE 2017 challenge with F value 55.6\% and Equal error 0.73, respectively.Comment: submitted to ICASSP2018, summary on the 1st place system in DCASE2017 task4 challeng

    Sound Event Detection with Sequentially Labelled Data Based on Connectionist Temporal Classification and Unsupervised Clustering

    Full text link
    Sound event detection (SED) methods typically rely on either strongly labelled data or weakly labelled data. As an alternative, sequentially labelled data (SLD) was proposed. In SLD, the events and the order of events in audio clips are known, without knowing the occurrence time of events. This paper proposes a connectionist temporal classification (CTC) based SED system that uses SLD instead of strongly labelled data, with a novel unsupervised clustering stage. Experiments on 41 classes of sound events show that the proposed two-stage method trained on SLD achieves performance comparable to the previous state-of-the-art SED system trained on strongly labelled data, and is far better than another state-of-the-art SED system trained on weakly labelled data, which indicates the effectiveness of the proposed two-stage method trained on SLD without any onset/offset time of sound events

    Weakly Labelled AudioSet Tagging with Attention Neural Networks

    Full text link
    Audio tagging is the task of predicting the presence or absence of sound classes within an audio clip. Previous work in audio tagging focused on relatively small datasets limited to recognising a small number of sound classes. We investigate audio tagging on AudioSet, which is a dataset consisting of over 2 million audio clips and 527 classes. AudioSet is weakly labelled, in that only the presence or absence of sound classes is known for each clip, while the onset and offset times are unknown. To address the weakly-labelled audio tagging problem, we propose attention neural networks as a way to attend the most salient parts of an audio clip. We bridge the connection between attention neural networks and multiple instance learning (MIL) methods, and propose decision-level and feature-level attention neural networks for audio tagging. We investigate attention neural networks modeled by different functions, depths and widths. Experiments on AudioSet show that the feature-level attention neural network achieves a state-of-the-art mean average precision (mAP) of 0.369, outperforming the best multiple instance learning (MIL) method of 0.317 and Google's deep neural network baseline of 0.314. In addition, we discover that the audio tagging performance on AudioSet embedding features has a weak correlation with the number of training samples and the quality of labels of each sound class.Comment: 13 page

    Joint Detection and Classification Convolutional Neural Network on Weakly Labelled Bird Audio Detection

    Get PDF
    Bird audio detection (BAD) aims to detect whether there is a bird call in an audio recording or not. One difficulty of this task is that the bird sound datasets are weakly labelled, that is only the presence or absence of a bird in a recording is known, without knowing when the birds call. We propose to apply joint detection and classification (JDC) model on the weakly labelled data (WLD) to detect and classify an audio clip at the same time. First, we apply VGG like convolutional neural network (CNN) on mel spectrogram as baseline. Then we propose a JDC-CNN model with VGG as a classifier and CNN as a detector. We report the denoising method including optimally-modified log-spectral amplitude (OM-LSA), median filter and spectral spectrogram will worse the classification accuracy on the contrary to previous work. JDC-CNN can predict the time stamps of the events from weakly labelled data, so is able to do sound event detection from WLD. We obtained area under curve (AUC) of 95.70% on the development data and 81.36% on the unseen evaluation data, which is nearly comparable to the baseline CNN model

    Sound Event Detection and Time-Frequency Segmentation from Weakly Labelled Data

    Get PDF
    Sound event detection (SED) aims to detect when and recognize what sound events happen in an audio clip. Many supervised SED algorithms rely on strongly labelled data which contains the onset and offset annotations of sound events. However, many audio tagging datasets are weakly labelled, that is, only the presence of the sound events is known, without knowing their onset and offset annotations. In this paper, we propose a time-frequency (T-F) segmentation framework trained on weakly labelled data to tackle the sound event detection and separation problem. In training, a segmentation mapping is applied on a T-F representation, such as log mel spectrogram of an audio clip to obtain T-F segmentation masks of sound events. The T-F segmentation masks can be used for separating the sound events from the background scenes in the time-frequency domain. Then a classification mapping is applied on the T-F segmentation masks to estimate the presence probabilities of the sound events. We model the segmentation mapping using a convolutional neural network and the classification mapping using a global weighted rank pooling (GWRP). In SED, predicted onset and offset times can be obtained from the T-F segmentation masks. As a byproduct, separated waveforms of sound events can be obtained from the T-F segmentation masks. We remixed the DCASE 2018 Task 1 acoustic scene data with the DCASE 2018 Task 2 sound events data. When mixing under 0 dB, the proposed method achieved F1 scores of 0.534, 0.398 and 0.167 in audio tagging, frame-wise SED and event-wise SED, outperforming the fully connected deep neural network baseline of 0.331, 0.237 and 0.120, respectively. In T-F segmentation, we achieved an F1 score of 0.218, where previous methods were not able to do T-F segmentation.Comment: 12 pages, 8 figure
    corecore