2,133 research outputs found

    MAC-Oriented Programmable Terahertz PHY via Graphene-based Yagi-Uda Antennas

    Get PDF
    Graphene is enabling a plethora of applications in a wide range of fields due to its unique electrical, mechanical, and optical properties. In the realm of wireless communications, graphene shows great promise for the implementation of miniaturized and tunable antennas in the terahertz band. These unique advantages open the door to new reconfigurable antenna structures which, in turn, enable novel communication protocols at different levels of the stack. This paper explores both aspects by, first, presenting a terahertz Yagi-Uda-like antenna concept that achieves reconfiguration both in frequency and beam direction simultaneously. Then, a programmable antenna controller design is proposed to expose the reconfigurability to the PHY and MAC layers, and several examples of its applicability are given. The performance and cost of the proposed scheme is evaluated through full-wave simulations and comparative analysis, demonstrating reconfigurability at nanosecond granularity with overheads below 0.02 mm2^{2} and 0.2 mW.Comment: Accepted for presentation in IEEE WCNC '1

    Electromagnetic energy coupling mechanism with matrix architecture control

    Get PDF
    The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms

    Reconfigurable Antenna Systems: Platform implementation and low-power matters

    Get PDF
    Antennas are a necessary and often critical component of all wireless systems, of which they share the ever-increasing complexity and the challenges of present and emerging trends. 5G, massive low-orbit satellite architectures (e.g. OneWeb), industry 4.0, Internet of Things (IoT), satcom on-the-move, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, all call for highly flexible systems, and antenna reconfigurability is an enabling part of these advances. The terminal segment is particularly crucial in this sense, encompassing both very compact antennas or low-profile antennas, all with various adaptability/reconfigurability requirements. This thesis work has dealt with hardware implementation issues of Radio Frequency (RF) antenna reconfigurability, and in particular with low-power General Purpose Platforms (GPP); the work has encompassed Software Defined Radio (SDR) implementation, as well as embedded low-power platforms (in particular on STM32 Nucleo family of micro-controller). The hardware-software platform work has been complemented with design and fabrication of reconfigurable antennas in standard technology, and the resulting systems tested. The selected antenna technology was antenna array with continuously steerable beam, controlled by voltage-driven phase shifting circuits. Applications included notably Wireless Sensor Network (WSN) deployed in the Italian scientific mission in Antarctica, in a traffic-monitoring case study (EU H2020 project), and into an innovative Global Navigation Satellite Systems (GNSS) antenna concept (patent application submitted). The SDR implementation focused on a low-cost and low-power Software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. In a second embodiment, the flexibility of the SDR paradigm has been traded off to avoid the power consumption associated to the relevant operating system. Application field of reconfigurable antenna is, however, not limited to a better management of the energy consumption. The analysis has also been extended to satellites positioning application. A novel beamforming method has presented demonstrating improvements in the quality of signals received from satellites. Regarding those who deal with positioning algorithms, this advancement help improving precision on the estimated position

    Application of adaptive antenna techniques to future commercial satellite communication

    Get PDF
    The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems

    A Compact RF/Photonic Antenna using a Quantum Dot Mode Locked Laser as a Source

    Get PDF
    The research presented here is focused on achieving an active compact RF/Photonic antenna module based on a broadband antenna design integrated with a quantum dot mode-locked laser (QDMLL). A two-section QDMLL is used to produce pulsed microwaves signals to feed the radiating antenna. To realize the microwave signal radiation generated by the QDMLL, several possible MLL-integrated-antennas are proposed. The prototype integrated antenna is fully described, including the design, fabrication, and characterization of the antenna performance. Additionally, this work deals with the improvement of the radiation efficiency and functionality of the integrated module. An impedance matching network is designed to match the QDMLL to a bowtie slot antenna. The RF/Photonic integrated prototype is tested and analyzed over a wide frequency range. Finally a QDMLL-integrated-phased antenna array is designed to achieve beam steering. By manipulating the applied voltage bias of each QDMLL, one can achieve beam steering without the use of external RF phase shifters yielding a more compact design of an RF/photonic antenna on a chip. The 2-element integrated prototype is presented and discussed. Beam-steering is fully demonstrated via both simulation and measurements

    Reconfigurable antenna pattern verification

    Get PDF
    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna

    RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Get PDF
    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes

    Analysis, design and implementation of front-end reconfigurable antenna systems (FERAS)

    Get PDF
    The increase in demand on reconfigurable systems and especially for wireless communications applications has stressed the need for smart and agile RF devices that sense and respond to the RF changes in the environment. Many different applications require frequency agility with software control ability such as in a cognitive radio environment where antenna systems have to be designed to fulfill the extendable and reconfigurable multi-service and multi-band requirements. Such applications increase spectrum efficiency as well as the power utilization in modern wireless systems. The emphasis of this dissertation revolves around the following question: Is it possible to come up with new techniques to achieve reconfigurable antenna systems with better performance?\u27 Two main branches constitute the outline of this work. The first one is based on the design of reconfigurable antennas by incorporating photoconductive switching elements in order to change the antenna electrical properties. The second branch relies on the change in the physical structure of the antenna via a rotational motion. In this work a new photoconductive switch is designed with a new light delivery technique. This switch is incorporated into new optically pumped reconfigurable antenna systems (OPRAS). The implementation of these antenna systems in applications such as cognitive radio is demonstrated and discussed. A new radio frequency (RF) technique for measuring the semiconductor carrier lifetime using optically reconfigurable transmission lines is proposed. A switching time investigation for the OPRAS is also accomplished to better cater for the cognitive radio requirements. Moreover, different reconfiguration mechanisms are addressed such as physical alteration of antenna parts via a rotational motion. This technique is supported by software to achieve a complete controlled rotatable reconfigurable cognitive radio antenna system. The inter-correlation between neural networks and cellular automata is also addressed for the design of reconfigurable and multi-band antenna systems for various applications.\u2

    FPGA controlled reconfigurable antenna

    Get PDF
    At the present time, the advantages of reconfigurable antennas are numerous but limited by the method of controlling their configuration. This thesis proposes to utilize the advantages of Field Programmable Gate Arrays (FPGAs) to overcome this dilemma. Two experimental antennas are designed. The first reconfigurable antenna consists of two patches connected by two diodes. The second reconfigurable antenna has sixteen possible combinations and is designed with four perimeter patches also connected via diodes. The electromagnetic modelling software HFSS is utilized to predict the resulting radiation patterns and resonances of the possible configurations. A computer program is created to interface a user with the FPGA controlling the antenna. A module for receiving instructions and asserting biasing signals is programmed onto the FPGA. Finally, a prototype antenna is fabricated using a mechanical etching machine. Experimental results are examined using a network analyzer. The FPGA system is connected to the reconfigurable antenna. Both experimental and theoretical results show that configurable tuning is achieved
    • …
    corecore