2 research outputs found

    A hypoglycemic episode diagnosis system based on neural networks for Type 1 diabetes mellitus

    Get PDF
    Hypoglycemia (or low blood glucose) is dangerous for Type 1 diabetes mellitus (T1DM) patients, as this can cause unconsciousness or even death. However, it is impossible to monitor the hypoglycemia by measuring patients’ blood glucose levels all the time, especially at night. In this paper, a hypoglycemic episode diagnosis system is proposed to determine T1DM patients’ blood glucose levels based on these patients’ physiological parameters which can be measured online. It can be used not only to diagnose hypoglycemic episodes in T1DM patients, but also to generate a set of rules, which describe the domains of physiological parameters that lead to hypoglycemic episodes. The hypoglycemic episode diagnosis system addresses the limitations of the traditional neural network approaches which cannot generate implicit information. The performance of the proposed hypoglycemic episode diagnosis system is evaluated by using real T1DM patients’ data sets collected from the Department of Health, Government of Western Australia, Australia. Results show that satisfactory diagnosis accuracy can be obtained. Also, explicit knowledge can be produced such that the deficiency of traditional neural networks can be overcome. A clear understanding of how they perform diagnosis can be indicated

    EDMON - Electronic Disease Surveillance and Monitoring Network: A Personalized Health Model-based Digital Infectious Disease Detection Mechanism using Self-Recorded Data from People with Type 1 Diabetes

    Get PDF
    Through time, we as a society have been tested with infectious disease outbreaks of different magnitude, which often pose major public health challenges. To mitigate the challenges, research endeavors have been focused on early detection mechanisms through identifying potential data sources, mode of data collection and transmission, case and outbreak detection methods. Driven by the ubiquitous nature of smartphones and wearables, the current endeavor is targeted towards individualizing the surveillance effort through a personalized health model, where the case detection is realized by exploiting self-collected physiological data from wearables and smartphones. This dissertation aims to demonstrate the concept of a personalized health model as a case detector for outbreak detection by utilizing self-recorded data from people with type 1 diabetes. The results have shown that infection onset triggers substantial deviations, i.e. prolonged hyperglycemia regardless of higher insulin injections and fewer carbohydrate consumptions. Per the findings, key parameters such as blood glucose level, insulin, carbohydrate, and insulin-to-carbohydrate ratio are found to carry high discriminative power. A personalized health model devised based on a one-class classifier and unsupervised method using selected parameters achieved promising detection performance. Experimental results show the superior performance of the one-class classifier and, models such as one-class support vector machine, k-nearest neighbor and, k-means achieved better performance. Further, the result also revealed the effect of input parameters, data granularity, and sample sizes on model performances. The presented results have practical significance for understanding the effect of infection episodes amongst people with type 1 diabetes, and the potential of a personalized health model in outbreak detection settings. The added benefit of the personalized health model concept introduced in this dissertation lies in its usefulness beyond the surveillance purpose, i.e. to devise decision support tools and learning platforms for the patient to manage infection-induced crises
    corecore