2 research outputs found

    A face - off - classical and heuristic - based path planning approaches

    Get PDF
    Robot path planning is a computational problem to find a valid sequence of configurations to move a robot from an initial to a final destination. Several classical and heuristic-based methods exist that can be used to solve the problem. This paper compares the performance of a classical method based on potential field, Lyapunov-based Control Scheme, with those of the standard and stepping ahead Firefly Algorithms. The performance comparison is based on the optimal path distance and time. The results show that the stepping ahead Firefly algorithm finds a shorter path in lesser duration when compared with the Lyapunov-based method. The LbCS also inherently faces the local minima problem when the start, target, and obstacle’s center coordinates are collinear. This problem is solved using the firefly algorithm where the diversification of the fireflies helps escape local minima

    Navigational Strategies for Control of Underwater Robot using AI based Algorithms

    Get PDF
    Autonomous underwater robots have become indispensable marine tools to perform various tedious and risky oceanic tasks of military, scientific, civil as well as commercial purposes. To execute hazardous naval tasks successfully, underwater robot needs an intelligent controller to manoeuver from one point to another within unknown or partially known three-dimensional environment. This dissertation has proposed and implemented various AI based control strategies for underwater robot navigation. Adaptive versions of neuro-fuzzy network and several stochastic evolutionary algorithms have been employed here to avoid obstacles or to escape from dead end situations while tracing near optimal path from initial point to destination of an impulsive underwater scenario. A proper balance between path optimization and collision avoidance has been considered as major aspects for evaluating performances of proposed navigational strategies of underwater robot. Online sensory information about position and orientation of both target and nearest obstacles with respect to the robot’s current position have been considered as inputs for path planners. To validate the feasibility of proposed control algorithms, numerous simulations have been executed within MATLAB based simulation environment where obstacles of different shapes and sizes are distributed in a chaotic manner. Simulation results have been verified by performing real time experiments of robot in underwater environment. Comparisons with other available underwater navigation approaches have also been accomplished for authentication purpose. Extensive simulation and experimental studies have ensured the obstacle avoidance and path optimization abilities of proposed AI based navigational strategies during motion of underwater robot. Moreover, a comparative study has been performed on navigational performances of proposed path planning approaches regarding path length and travel time to find out most efficient technique for navigation within an impulsive underwater environment
    corecore