167,914 research outputs found

    A framework for generalized group testing with inhibitors and its potential application in neuroscience

    Get PDF
    The main goal of group testing with inhibitors (GTI) is to efficiently identify a small number of defective items and inhibitor items in a large set of items. A test on a subset of items is positive if the subset satisfies some specific properties. Inhibitor items cancel the effects of defective items, which often make the outcome of a test containing defective items negative. Different GTI models can be formulated by considering how specific properties have different cancellation effects. This work introduces generalized GTI (GGTI) in which a new type of items is added, i.e., hybrid items. A hybrid item plays the roles of both defectives items and inhibitor items. Since the number of instances of GGTI is large (more than 7 million), we introduce a framework for classifying all types of items non-adaptively, i.e., all tests are designed in advance. We then explain how GGTI can be used to classify neurons in neuroscience. Finally, we show how to realize our proposed scheme in practice

    Neural coding strategies and mechanisms of competition

    Get PDF
    A long running debate has concerned the question of whether neural representations are encoded using a distributed or a local coding scheme. In both schemes individual neurons respond to certain specific patterns of pre-synaptic activity. Hence, rather than being dichotomous, both coding schemes are based on the same representational mechanism. We argue that a population of neurons needs to be capable of learning both local and distributed representations, as appropriate to the task, and should be capable of generating both local and distributed codes in response to different stimuli. Many neural network algorithms, which are often employed as models of cognitive processes, fail to meet all these requirements. In contrast, we present a neural network architecture which enables a single algorithm to efficiently learn, and respond using, both types of coding scheme

    Design and construction of a new Drosophila species, D.synthetica, by synthetic regulatory evolution

    Get PDF
    Here, I merge the principles of synthetic biology^1,2^ and regulatory evolution^3-11^ to create a new species^12-15^ with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfills the criteria of a new species according to Mayr's "Biological Species Concept"^7,10^. The genetic circuit entails the loss of a non-essential transcription factor and the introduction of cryptic enhancers. Subsequent activation of those enhancers causes hybrid lethality. The transition from "transgenic organisms" towards "synthetic species", such as Drosophila synthetica, constitutes a safety mechanism to avoid hybridization with wild type populations and preserve natural biodiversity^16-18^. Drosophila synthetica is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other transgenic animals
    • …
    corecore