3,897 research outputs found

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Proactive Assessment of Accident Risk to Improve Safety on a System of Freeways, Research Report 11-15

    Get PDF
    This report describes the development and evaluation of real-time crash risk-assessment models for four freeway corridors: U.S. Route 101 NB (northbound) and SB (southbound) and Interstate 880 NB and SB. Crash data for these freeway segments for the 16-month period from January 2010 through April 2011 are used to link historical crash occurrences with real-time traffic patterns observed through loop-detector data. \u27The crash risk-assessment models are based on a binary classification approach (crash and non-crash outcomes), with traffic parameters measured at surrounding vehicle detection station (VDS) locations as the independent variables. The analysis techniques used in this study are logistic regression and classification trees. Prior to developing the models, some data-related issues such as data cleaning and aggregation were addressed. The modeling efforts revealed that the turbulence resulting from speed variation is significantly associated with crash risk on the U.S. 101 NB corridor. The models estimated with data from U.S. 101 NB were evaluated on the basis of their classification performance, not only on U.S. 101 NB, but also on the other three freeway segments for transferability assessment. It was found that the predictive model derived from one freeway can be readily applied to other freeways, although the classification performance decreases. The models that transfer best to other roadways were determined to be those that use the least number of VDSs–that is, those that use one upstream or downstream station rather than two or three.\ The classification accuracy of the models is discussed in terms of how the models can be used for real-time crash risk assessment. The models can be applied to developing and testing variable speed limits (VSLs) and ramp-metering strategies that proactively attempt to reduce crash risk

    A Hybrid Approach of Traffic Flow Prediction Using Wavelet Transform and Fuzzy Logic

    Get PDF
    The rapid development of urban areas and the increasing size of vehicle fleets are causing severe traffic congestions. According to traffic index data (Tom Tom Traffic Index 2016), most of the larger cities in Canada placed between 30th and 100th most traffic congested cities in the world. A recent research study by CAA (Canadian Automotive Association) concludes traffic congestions cost drivers 11.5 million hours and 22 million liters of fuel each year that causes billions of dollars in lost revenues. Although for four decades’ active research has been going on to improve transportation management, statistical data shows the demand for new methods to predict traffic flow with improved accuracy. This research presents a hybrid approach that applies a wavelet transform on a time-frequency (traffic count/hour) signal to determine sharp variation points of traffic flow. Datasets in between sharp variation points reveal segments of data with similar trends. These sets of data, construct fuzzy membership sets by categorizing the processed data together with other recorded information such as time, season, and weather. When real-time data is compared with the historical data using fuzzy IF-THEN rules, a matched dataset represents a reliable source of information for traffic prediction. In addition to the proposed new method, this research work also includes experiment results to demonstrate the improvement of accuracy for long-term traffic flow prediction
    • …
    corecore