47 research outputs found

    Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion

    Full text link
    Underactuation is ubiquitous in human locomotion and should be ubiquitous in bipedal robotic locomotion as well. This chapter presents a coherent theory for the design of feedback controllers that achieve stable walking gaits in underactuated bipedal robots. Two fundamental tools are introduced, virtual constraints and hybrid zero dynamics. Virtual constraints are relations on the state variables of a mechanical model that are imposed through a time-invariant feedback controller. One of their roles is to synchronize the robot's joints to an internal gait phasing variable. A second role is to induce a low dimensional system, the zero dynamics, that captures the underactuated aspects of a robot's model, without any approximations. To enhance intuition, the relation between physical constraints and virtual constraints is first established. From here, the hybrid zero dynamics of an underactuated bipedal model is developed, and its fundamental role in the design of asymptotically stable walking motions is established. The chapter includes numerous references to robots on which the highlighted techniques have been implemented.Comment: 17 pages, 4 figures, bookchapte

    From bipedal locomotion to prosthetic walking: A hybrid system and nonlinear control approach

    Get PDF
    When modeled after the human form, humanoid robots more easily garner societal acceptance and gain increased dexterity in human environments. During this process of humanoid robot design, research on simulated bodies also yields a better understanding of the original biological system. Such advantages make humanoid robots ideal for use in areas such as elderly assistance, physical rehabilitation, assistive exoskeletons, and prosthetic devices. In these applications specifically, an understanding of human-like bipedal robotic locomotion is requisite for practical purposes. However, compared to mobile robots with wheels, humanoid walking robots are complex to design, difficult to balance, and hard to control, resulting in humanoid robots which walk slowly and unnaturally. Despite emerging research and technologies on humanoid robotic locomotion in recent decades, there still lacks a systematic method for obtaining truly kinematic and fluid walking. In this dissertation, we propose a formal optimization framework for achieving stable, human-like robotic walking with natural heel and toe behavior. Importantly, the mathematical construction allows us to directly realize natural walking on the custom-designed physical robot, AMBER2, resulting in a sustainable and robust multi-contact walking gait. As one of the ultimate goals of studying human-like robotic locomotion, the proposed systematic methodology is then translated to achieve prosthetic walking that is both human-like and energy-efficient, with reduced need for parameter tuning. We evaluate this method on two custom, powered transfemoral prostheses in both 2D (AMPRO1) and 3D (AMPRO3) cases. Finally, this dissertation concludes with future research opportunities.Ph.D

    Exponentially Stabilizing Controllers for Multi-Contact 3D Bipedal Locomotion

    Get PDF
    Models of bipedal walking are hybrid with continuous-time phases representing the Lagrangian stance dynamics and discrete-time transitions representing the impact of the swing leg with the walking surface. The design of continuous-time feedback controllers that exponentially stabilize periodic gaits for hybrid models of underactuated 3D bipedal walking is a significant challenge. We recently introduced a method based on an iterative sequence of optimization problems involving bilinear matrix inequalities (BMIs) to systematically design stabilizing continuous-time controllers for single domain hybrid models of underactuated bipedal robots with point feet. This paper addresses the exponential stabilization problem for multi-contact walking gaits with nontrivial feet. A family of parameterized continuous-time controllers is proposed for different phases of the walking cycle. The BMI algorithm is extended to the multi-domain hybrid models of anthropomorphic 3D walking locomotion to look for stabilizing controller parameters. The Poincaré map is addressed and a new set of sufficient conditions is presented that guarantees the convergence of the BMI algorithm to a stabilizing set of controller parameters at a finite number of iterations. The power of the algorithm is ultimately demonstrated through the design of stabilizing virtual constraint controllers for dynamic walking of a 3D humanoid model with 28 state variables and 275 controller parameters

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    First steps toward translating robotic walking to prostheses: a nonlinear optimization based control approach

    Get PDF
    This paper presents the first steps toward successfully translating nonlinear real-time optimization based controllers from bipedal walking robots to a self-contained powered transfemoral prosthesis: AMPRO, with the goal of improving both the tracking performance and the energy efficiency of prostheses control. To achieve this goal, a novel optimization-based optimal control strategy combining control Lyapunov function based quadratic programs with impedance control is proposed. This optimization-based optimal controller is first verified on a human-like bipedal robot platform, AMBER. The results indicate improved (compared to variable impedance control) tracking performance, stability and robustness to unknown disturbances. To translate this complete methodology to a prosthetic device with an amputee, we begin by collecting reference locomotion data from a healthy subject via inertial measurement units (IMUs). This data forms the basis for an optimization problem that generates virtual constraints, i.e., parameterized trajectories, specifically for the amputee . A online optimization based controller is utilized to optimally track the resulting desired trajectories. An autonomous, state based parameterization of the trajectories is implemented through a combination of on-board sensing coupled with IMU data, thereby linking the gait progression with the actions of the user. Importantly, the proposed control law displays remarkable tracking and improved energy efficiency, outperforming PD and impedance control strategies. This is demonstrated experimentally on the prosthesis AMPRO through the implementation of a holistic sensing, algorithm and control framework, resulting in dynamic and stable prosthetic walking with a transfemoral amputee

    Exponentially Stabilizing Controllers for Multi-Contact 3D Bipedal Locomotion

    Get PDF
    Models of bipedal walking are hybrid with continuous-time phases representing the Lagrangian stance dynamics and discrete-time transitions representing the impact of the swing leg with the walking surface. The design of continuous-time feedback controllers that exponentially stabilize periodic gaits for hybrid models of underactuated 3D bipedal walking is a significant challenge. We recently introduced a method based on an iterative sequence of optimization problems involving bilinear matrix inequalities (BMIs) to systematically design stabilizing continuous-time controllers for single domain hybrid models of underactuated bipedal robots with point feet. This paper addresses the exponential stabilization problem for multi-contact walking gaits with nontrivial feet. A family of parameterized continuous-time controllers is proposed for different phases of the walking cycle. The BMI algorithm is extended to the multi-domain hybrid models of anthropomorphic 3D walking locomotion to look for stabilizing controller parameters. The Poincaré map is addressed and a new set of sufficient conditions is presented that guarantees the convergence of the BMI algorithm to a stabilizing set of controller parameters at a finite number of iterations. The power of the algorithm is ultimately demonstrated through the design of stabilizing virtual constraint controllers for dynamic walking of a 3D humanoid model with 28 state variables and 275 controller parameters
    corecore