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Abstract— Models of bipedal walking are hybrid with
continuous-time phases representing the Lagrangian stance
dynamics and discrete-time transitions representing the impact
of the swing leg with the walking surface. The design of
continuous-time feedback controllers that exponentially sta-
bilize periodic gaits for hybrid models of underactuated 3D
bipedal walking is a significant challenge. We recently intro-
duced a method based on an iterative sequence of optimization
problems involving bilinear matrix inequalities (BMIs) to sys-
tematically design stabilizing continuous-time controllers for
single domain hybrid models of underactuated bipedal robots
with point feet. This paper addresses the exponential stabiliza-
tion problem for multi-contact walking gaits with nontrivial
feet. A family of parameterized continuous-time controllers is
proposed for different phases of the walking cycle. The BMI
algorithm is extended to the multi-domain hybrid models of
anthropomorphic 3D walking locomotion to look for stabilizing
controller parameters. The Poincaré map is addressed and a
new set of sufficient conditions is presented that guarantees
the convergence of the BMI algorithm to a stabilizing set of
controller parameters at a finite number of iterations. The
power of the algorithm is ultimately demonstrated through the
design of stabilizing virtual constraint controllers for dynamic
walking of a 3D humanoid model with 28 state variables and
275 controller parameters.

I. INTRODUCTION

This paper presents a systematic algorithm to design
continuous-time controllers that exponentially stabilize pe-
riodic gaits for multi-domain hybrid dynamical systems de-
scribing anthropomorphic 3D bipedal walking with nontrivial
feet. The hybrid systems consist of distinct phases (or do-
mains) with the dynamic model in each phase depending on
the nature of the contact between the feet and the ground. We
consider a family of parameterized continuous-time feedback
controllers that preserve a desired periodic walking gait for
the closed-loop system. The algorithm is developed based on
the Poincaré return map and employs an iterative sequence of
optimization problems involving bilinear matrix inequalities
(BMIs) to search for stabilizing controller parameters. The
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framework can ameliorate specific challenges in the design
of stabilizing controllers for bipedal robots arising from
high dimensionality and underactuation. The power of the
algorithm is ultimately demonstrated through the design of
a set of nonlinear feedback controllers with 275 controller
parameters for dynamic walking of a 3D humanoid model
with 28 state variables.

The control method most widely used on humanoid robots
is based on a heuristic notion of gait stability, known as
the zero moment point (ZMP) criterion [1], [2]. The ZMP
criterion assumes full actuation and results in quasi-static
and flat-footed walking. The ZMP assumption required for
flat-footed walking is not satisfied during underactuated
phases of human walking, e.g., initial heel contact and final
toe-off. Feedback control algorithms that directly deal with
the hybrid nature of legged locomotion have come out of
controlled symmetries [3], hybrid reduction [4], [5], trans-
verse linearization [6], and hybrid zero dynamics (HZD) [7],
[8]. Controlled symmetries and hybrid reduction typically
assume full actuation (though in specific cases one degree of
underactuation can be achieved [9]). However, transverse lin-
earization and HZD-based controllers are the only controllers
of these methods that explicitly deal with general cases of
underactuation. HZD-based controllers have been validated
numerically and experimentally for 2D and 3D bipedal robots
[10]–[19], 2D and 3D powered prosthetic legs [20]–[25],
exoskeletons [26], monopedal [27] and quadruped robots
[28]. In this approach, a set of output functions, referred
to as virtual constraints, is defined for the continuous-time
dynamics of the system and asymptotically driven to zero
by the input-output (I-O) linearizing feedback controller
[29]. For mechanical systems with more than one degree of
underactuation, the stability of walking gaits depends on the
choice of the virtual constraints [30], [31]. Anthropomorphic
heel-to-toe walking has been achieved in planar models [32,
Chapter 10] and most recently in a 3D robot [18] using the
HZD controllers. In particular, [18] presented an efficient
optimization framework (motion planning) to generate HZD
gaits. Although the gaits of [18] are stable, there is currently
no systematic algorithm to choose asymptotically stabilizing
virtual constraints for a given 3D walking gait. We are trying
to answer this fundamental question: how to present an
effective optimization algorithm to choose stabilizing virtual
constraints for a generated 3D gait with high degrees of
underactuation?

The most basic tool to investigate the stability of peri-
odic orbits for hybrid dynamical systems is the method of
Poincaré sections [8], [33]–[36] that describes the evolution

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5428-6/$31.00 ©2018 AACC 2210

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216299159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the system on a hyperplane transversal to the orbit by a
discrete-time system, referred to as the Poincaré return map.
One drawback of Poincaré sections analysis is the lack of a
closed-form expression for the Poincaré map and its Jacobian
linearization, which complicates the design of continuous-
time feedback controllers for hybrid models of bipedal
walking. To tackle this roadblock, we have recently proposed
an algorithm based on an iterative sequence of optimization
problems involving BMIs to choose stabilizing continuous-
time controllers from a family of parameterized feedback
laws [30], [37], [38]. These controllers were numerically and
experimentally verified for single domain hybrid models of
bipedal robots with point feet [39], [40].

The current paper addresses the important problem of
designing stabilizing virtual constraint controllers to achieve
dynamic and anthropomorphic multi-contact walking. In
particular, the contributions of the paper are as follows: 1)
A multi-domain hybrid system formulation for 3D human
walking is first presented that includes the “heel-roll”, “flat-
footed”, and “toe-roll” phases (see Fig. 1); 2) A family
of parameterized nonlinear feedback controllers including
parameterized virtual constraint controllers is presented for
different phases of the walking cycle; 3) The exponential
stabilization problem and Poincaré map for the multi-domain
hybrid models of walking are investigated; 4) The BMI
algorithm is extended to the models of anthropomorphic
bipedal walking; 5) A new set of sufficient conditions are
presented to guarantee the convergence of the algorithm to
a stabilizing set of controller parameters at a finite number
of iterations; and 6) Finally, the theoretical framework is
numerically confirmed through designing stabilizing virtual
constraint controllers with 275 controller parameters for
dynamic walking of a 3D humanoid model with 28 state
variables. Unlike the sufficient conditions in [37] that require
extensive computational techniques based on the third-order
derivative of the Poincaré map, the new conditions only
depend on the first- and second-order derivatives of the
Poincaré map and thereby can be effectively verified.

II. HYBRID MODEL OF WALKING

We consider a multi-domain hybrid system formulation to
describe 3D and anthropomorphic walking on a flat surface.
The hybrid model of walking is assumed to consist of three
distinct single support phases {1, 2, 3} executed in a fixed
order, i.e., they define the cyclic graph 1→ 2→ 3→ 1 (see
Fig. 1). The walking cycle starts with an underactuated phase
in which the stance heel acts as a pivot point on the ground
(i.e., Phase 1 or “heel-roll”), followed by a fully actuated
phase in which the stance foot remains flat on the walking
surface (i.e., Phase 2 or “flat-footed” phase), and finishes
with an alternative underactuated phase where the stance toe
is in contact with the ground and the stance foot rotates about
the toe (i.e., Phase 3 or “toe-roll”). The double support phase
is assumed to be instantaneous and occurs at the end of
Phase 3 (i.e., discrete transition 3→ 1). The transition from
the heel-roll to flat-footed phase (i.e., 1→ 2) happens when
the stance toe contacts the walking surface. In an analogous

1 2 3

ẋ = f1(x) + g1(x)u

x+ = ∆1→2(x
−)

ẋ = f2(x) + g2(x)u

x+ = ∆2→3(x
−)

ẋ = f3(x) + g3(x)u

x+ = ∆3→1(x
−)

Fig. 1: Illustration of the multi-domain hybrid model of 3D
walking. Continuous-time phases and discrete-time transi-
tions are represented by the vertices and edges of the directed
cycle, respectively. The black dots indicate the constraints
enforced in each continuous-time phase. The hybrid model
consists of two underactuated phases, shown by the vertices
1 (heel-roll) and 3 (toe-roll). The vertex 2 (flat-footed) is
assumed to be fully-actuated.

manner, the transition from the toe-roll to heel-roll phase
(i.e., 3→ 1) occurs when the swing heel impacts the ground.
Finally, the discrete transition from the flat-footed to toe-
roll phase (i.e., 2 → 3) is initiated by causing the stance
heel to take-off the walking surface. In our formulation,
the continuous-time phases are represented by the vertices
of the graph shown by i ∈ I := {1, 2, 3}, whereas the
discrete-time transitions are denoted by the edges shown by
e ∈ E := {1 → 2, 2 → 3, 3 → 1}. For later purposes, we
define the index of the next phase function as µ : I → I
by µ(i) := mod (i, 3) + 1, in which “mod” represents the
modulo operation.

We consider a common state vector to derive equations
of motion during all phases of walking often termed the
“unpinned” model of the robot. This vector, shown by x :=
(q>, q̇>)>, represents the state variables for the mechanical
system during the flight phase (i.e., no leg in contact with
the ground). Here, q ∈ Q ⊂ Rnq and q̇ ∈ Rnq denote the
generalized position and velocity vectors, respectively, for
some positive integer nq . It is assumed that q consists of three
components for the translational motion of the robot, three
components for the absolute orientation of the system with
respect to a world frame, and a set of internal configuration
variables to describe the shape of the robot. The configuration
space is also represented by an open and connected set Q.
We remark that the number of degrees of freedom (DOFs)
for each phase depends on the foot-ground contact nature.
The holonomic constraints arising from different contact
conditions will be considered in Sections II-A and II-B to
extract the equations of motions.

The open-loop hybrid control system representing multi-
contact walking is given by the following tuple (see Fig. 1)

H L ol = (Λ,X ,U ,D,S,∆, FG) , (1)

where
• Λ = (I, E) is a directed cycle with vertices I =
{1, 2, 3} and edges E = {ei = {i→ µ(i)}}i∈I ;

2211



• X := {Xi}i∈I is a set of state manifolds, in which
Xi ⊂ R2nq denotes the state manifold for the vertex
i ∈ I;

• U := {Ui}i∈I is a set of admissible controls, in which
Ui ⊂ Rm represents the set of admissible control inputs
for the vertex i ∈ I and some positive integer m;

• D := {Di}i∈I is a set of domains of admissibility, in
which Di ⊂ Xi×Ui is a smooth submanifold of R2nq×
Rm for i ∈ I;

• S := {Se}e∈E is a set of guards, in which Si→µ(i) ⊂ Di
for i ∈ I;

• ∆ := {∆e}e∈E is a set of reset laws, where ∆i→µ(i)

is a smooth discrete-time system represented by x+ =
∆i→µ(i) (x−) for i ∈ I, and x−(t) := limτ↗t x(τ) and
x+(t) := limτ↘t x(τ) denote the left and right limits
of the state trajectory x(t), respectively; and

• FG := {(fi, gi)}i∈I , where (fi, gi) is a control system
on Di, i.e., ẋ = fi(x) + gi(x)u for (x, u) ∈ Di and
i ∈ I with fi and columns of the gi matrix being smooth
on Xi.

A. Continuous-Time Phases

This section addresses the continuous-time dynamics of
the bipedal walker during different phases of walking.
Throughout this paper, we shall assume that the feet are
“forward facing” with one “heel” point (i.e., back end) and
two “toe” points (i.e., forward ends), referred to as the right
and left toes. In particular, the biped walker’s foot prints
form a triangular on the walking surface whose vertices are
denoted by the heel (“h”), right toe (“rt”), and left toe (“lt”).
We represent the Cartesian coordinates of these vertices by
plj ∈ R3, where the subscript j ∈ {st, sw} denotes the stance
and swing feet, and the superscript l ∈ {h, rt, lt} represents
the vertex type. We further assume that a coordinate frame
has been rigidly attached to the stance foot. The orientation
of this frame with respect to an inertial world frame is given
by the rotation matrix Rst(q) ∈ SO(3), where SO(3) is
the rotation group in R3. During the continuous-time phase
i ∈ I, the evolution of the mechanical system is described by
the following set of ordinary differential equations (ODEs)
[41]:

D (q) q̈ + C (q, q̇) q̇ +G (q) = B u+ J>i (q)λi (2)

Ji (q) q̈ +
∂

∂q

(
∂Ji
∂q

(q) q̇

)
q̇ = 0. (3)

In (2), D(q) ∈ Rnq×nq denotes the positive-definite mass-
inertia matrix, C(q, q̇) q̇ ∈ Rnq represents the Coriolis and
centrifugal terms, G(q) ∈ Rnq denotes the gravitational
terms, and B ∈ Rnq×m represents the input distribution
matrix with the property rank(B) = m. Moreover, Ji(q)
and λi represent the corresponding contact Jacobian matrix
and Lagrange multipliers, respectively. One can eliminate the
Lagrange multipliers λi and solve the set of ODEs (2) and
(3) for q̈ as follows

D (q) q̈ + Fi (q, q̇) = Ti (q)u, (4)

where Ti := ΠiB, Πi := I − J>i
(
JiD

−1J>i
)−1

JiD
−1,

and Fi := Πi (C q̇ +G) + J>i
(
JiD

−1J>i
)−1 ∂

∂q

(
∂Ji
∂q q̇

)
q̇.

We remark that (4) can be easily expressed in the input-affine
format ẋ = fi(x) + gi(x)u for all i ∈ I. Furthermore, the
state manifolds Xi are given by

X1 :=
{(
q>, q̇>

)> ∈ TQ | ph
st(q) = const, J1(q) q̇ = 0

}
X2 :=

{(
q>, q̇>

)> ∈ TQ | ph
st(q) = const, Rst(q) = const,

J2(q) q̇ = 0
}

X3 :=
{(
q>, q̇>

)> ∈ TQ | prt
st(q) = const, plt

st(q) = const,

J3(q) q̇ = 0
}
,

where TQ := Q × Rnq represents the tangent bundle of Q
and “const” stands for the constant. We can show that 1)
dim (X1) = 2(nq − 3), dim (X2) = 2(nq − 6), dim (X3) =
2(nq − 5), and 2) Phase 2 is fully-actuated if and only if
nq = m + 6. Finally, one can present a set of domains of
admissibility {Di}i∈I to represent the unilateral constraints
on the forces and moments at the ground-foot interface
similar to [42].

B. Discrete-Time Transitions

This section addresses the discrete transitions for the
hybrid model of walking (1). The transitions 1 → 2 and
3 → 1 can be represented by instantaneous and inelastic
impact models for which the ground reaction forces/moments
at the contacting points are impulsive [43]. In particular, inte-
gration of the flight phase dynamics subject to the impulsive
forces/moments over the infinitesimal impact interval yields

D (q)
(
q̇+ − q̇−

)
= J>i→µ(i) (q) λi→µ(i) (5)

Ji→µ(i) (q) q̇+ = 0, (6)

where i ∈ I\{2}, Ji→µ(i)(q) is the corresponding impact Ja-
cobian matrix, λi→µ(i) represents the intensity of the impul-
sive forces/moments, and q̇− and q̇+ denote the generalized
velocity components right before and after the impact event,
respectively. The transition from the flat-footed to toe-roll
phase (i.e., 2→ 3) finally assumes the continuity of position
and velocity components, and consequently, ∆2→3(x) :=
idTQ, where idTQ represents the identity function on TQ.

III. FAMILY OF PARAMETERIZED
CONTINUOUS-TIME FEEDBACK CONTROLLERS

The objective of this section is to present a family of
parameterized and smooth continuous-time feedback con-
trollers that exponentially stabilize periodic gaits for the
multi-domain hybrid model of walking (1).

A. Periodic Walking Gaits and Phasing Variables

Throughout this paper, we shall assume that there is a
period-one orbit for the open-loop hybrid model (1) that
is transversal to the guards. In particular, we make the
following assumption.

2212



Assumption 1 (Transversal Period-One Walking Gait):
There exist 1) finite numbers T ?i > 0, 2) smooth nominal
control inputs ui : [0, T ?i ] → U , and 3) smooth nominal
state trajectories ϕ?i : [0, T ?i ]→ Xi for i ∈ I such that

1) the continuous-time ODEs are satisfied, i.e., ϕ̇?i (t) =
fi (ϕ?i (t)) + gi (ϕ?i (t))u

?
i (t) for all t ∈ [0, T ?i ] and

i ∈ I with the properties a) (ϕ?i (t), u
?
i (t)) /∈ Si→µ(i)

for t ∈ [0, T ?i ) and b) (ϕ?i (T ?i ) , u?i (T ?i )) ∈ Si→µ(i);
2) the periodicity condition is met, i.e., ϕ?µ(i) (0) =

∆i→µ(i) (ϕ?i (T ?i )), i ∈ I; and
3) the transversality conditions hold in the sense that

the nominal state trajectories are transversal to the
corresponding guards.

Then, O := O1 ∪O2 ∪O3 is a period-one gait for the open-
loop hybrid model (1) that is transversal to the guards. In our
notation, Oi := {x = ϕ?i (t) | 0 ≤ t < T ?i } is the projection
of the orbit onto the state manifold Xi for i ∈ I. For later
purposes, we define {x?i } as the intersection of Oi and the
guard Si→µ(i), where Oi denotes the set closure of the orbit
Oi.

We shall consider O as the desired orbit to be exponen-
tially stabilized. In order to develop time-invariant feedback
controllers, we make use of the concept of a phasing variable.

Assumption 2 (Phasing Variables): There exist smooth
and real-valued functions θi : Xi → R, i ∈ I, referred to as
the phasing variables, that are strictly increasing functions
of time on Oi, that is, θ̇i(x) > 0 for all x ∈ Oi.

The phasing variable is key to obtaining time-invariant
feedback controllers. It represents the progression of the
robot on the walking gait and plays the role of time in
time-invariant feedback controllers. Reference [44] shows
that the existence of phasing variables follows directly from
Assumption 1.

B. Family of Parameterized Controllers

We consider a family of parameterized state feedback
controllers as follows:

u = Γi (x, ξi) , i ∈ I (7)

for the continuous-time phases of the hybrid model of
walking, in which Γi : Xi × Ξi → Ui is a C∞ feedback law
parameterized by a set of adjustable controller parameters
ξi ∈ Ξi to be determined. In our notation, Ξi ⊂ Rpi denotes
the set of admissible controller parameters for some positive
integer pi. Throughout this paper, we shall assume that the
family of feedback controllers (7) satisfies the following
invariance condition.

Assumption 3 (Invariant Periodic Orbit): The orbit Oi is
invariant under the change of the controller parameters
ξi ∈ Ξi, that is, Γi (ϕ?i (t), ξi) = u?i (t), for all t ∈ [0, T ?i ]
and i ∈ I. In particular, Oi is an integral curve of the
parameterized and closed-loop ODE ẋ = f cl

i (x, ξi) :=
fi(x) + gi(x) Γi (x, ξi) for all ξi ∈ Ξi.

Assumption 3 will allow the BMI algorithm of Section
IV-B to look for stabilizing controller parameters while pre-
serving the desired orbit for the closed-loop hybrid system.

C. Input-Output Linearizing Feedback Controllers

This section presents an important family of parameterized
state feedback controllers (7), referred to as virtual constraint
controllers, that satisfies the invariance condition in Assump-
tion 3. Virtual constraints are defined as holonomic output
functions y(x) for continuous-time portions of hybrid models
of walking to coordinate the links of bipedal robots within a
stride [7], [10], [11], [13], [20], [21], [30], [33], [45], [46].
In this paper, we consider a parameterized family of virtual
constraints for continuous-time phases as follows:

yi (x, ξi) = Hi (ξi) (q − qd,i (θi)) , (8)

where Hi (ξi) is the output matrix to be determined and
parameterized by ξi, and qd,i(θi) represents the desired
evolution of the configuration variables on the orbit Oi in
terms of the phasing variable θi. In particular, qd,i (θi) :=
πq (xd,i (θi)) and xd,i (θi) := ϕ?i (t) |

t=(θ?i )
−1

(θi)
, where

θi = θ?i (t) and t = (θ?i )
−1

(θi) denote the time profile
of the phasing variable θi on the orbit Oi and its inverse
function, respectively. Furthermore, πq(q, q̇) := q represents
the canonical projection onto the configuration space.

During the heel- and toe-roll phases, the mechanical
system is underactuated and the output functions are chosen
to have the same dimension as the control input, that is,
dim(y1) = dim(y3) = dim(u) = m (i.e., H1 ∈ Rm×nq

and H3 ∈ Rm×nq ). The I-O linearizing controllers are then
employed to zero the output functions y1 and y3 as follows

Γi (x, ξi) = − (LgiLfiyi)
−1

(
L2
fiyi +

KD

ε
Lfiyi +

KP

ε2
yi

)
,

(9)
which results in the output dynamics ÿi+ KD

ε ẏi+
KP

ε2 yi = 0.
Here, we have assumed that the output function yi(x, ξi)
has relative degree vector (2, 2, · · · , 2) with respect to u on
an open neighborhood of Oi for i ∈ I \ {2}. In addition,
KP > 0 and KD > 0 are positive PD gains, and ε > 0 is a
scalar to tune the settling time. We remark that the feedback
controller (9) renders the corresponding parameterized zero
dynamics manifold Zi (ξi) forward invariant under the flow
of the closed-loop ODE ẋ = f cl

i (x, ξi), in which Zi (ξi) :=
{x ∈ Xi | yi (x, ξi) = Lfiyi (x, ξi) = 0}.

During the flat-footed phase, the system is assumed to
be fully actuated and in order to have a nontrivial zero
dynamics manifold, we consider an (m − 1)-dimensional
output function to be regulated, i.e., dim(y2) = dim(u)−1 =
m− 1 or equivalently H2 ∈ R(m−1)×nq . To zero the output
function y2, we then split the control input as follows

u =
(
u>rem, uA

)>
, (10)

where uA ∈ R and urem ∈ Rm−1 denote the torque at the
sagittal stance ankle joint and torques at the remaining actu-
ated joints, respectively. Differentiating the output function
y2 along the solutions of the closed-loop system yields

ÿ2 = L2
f2y2 + Lgrem

2
Lf2y2 urem + LgA

2
Lf2y2 uA, (11)

in which g2(x) =
[
grem

2 (x) gA
2 (x)

]
is a partitioning of the g2

matrix corresponding to (10). The I-O linearizing controller
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is then chosen as

urem (x, ξ2, uA) =−
(
Lgrem

2
Lf2y2

)−1
(

L2
f2y2 + LgA

2
Lf2y2 uA

+
KD

ε
Lf2y2 +

KP

ε2
y2

)
(12)

that renders the corresponding zero dynamics manifold (i.e.,
Z2(ξ2)) forward invariant under the flow of the closed-loop
system regardless of the choice of uA. In order to preserve
the orbit O2 for the system, we can employ the following
LQR controller for the sagittal stance ankle torque

uA (x, ξ2) = u?A (θ2)−K2 (ξ2) (x− xd,2 (θ2)) , (13)

where u?A (θ2) represents the nominal stance ankle torque on
the desired orbit in terms of the phasing variable θ2, i.e.,
u?A (θ2) := πu ◦ u?2(t)|

t=(θ?2)
−1

(θ2)
, πu(urem, uA) := uA is

the canonical projection map onto the stance ankle torque,
xd,2 (θ2) denotes the desired state variables on the orbit, and
K2 (ξ2) is the stance ankle controller gain to be determined
and parameterized by ξ2. The state feedback controller
for the flat-footed phase is finally chosen as Γ2(x, ξ2) =
(u>rem, uA)>. According to the construction procedure, Oi ⊂
Zi (ξi) for all ξi ∈ Ξi and i ∈ I. Furthermore from [30,
Example 2], the I-O linearizing feedback controllers satisfy
the invariance condition, i.e., ∂Γi

∂x (x, ξi) = 0 for all x ∈ Oi
and i ∈ I. Without loss of generality, we can assume that
ξi = vec (Hi) for i ∈ I \ {2} and ξ2 = (vec(H2)>,K2)>,
in which “vec” represents the vectorization operator.

IV. EXPONENTIAL STABILIZATION

This section addresses the exponential stabilization prob-
lem. The objective is to systematically tune the controller
parameters ξ := (ξ>1 , ξ

>
2 , ξ

>
3 )> ∈ Ξ such that the periodic

orbit O becomes orbitally exponentially stable for the closed-
loop hybrid system, where Ξ := Ξ1 × Ξ2 × Ξ3 ∈ Rp and
p := p1 + p2 + p3.

A. Poincaré Return Map

We make use of the Poincaré sections approach to study
the stabilization problem. For this goal, let us denote the
unique solution of the parameterized and closed-loop ODE
ẋ = f cl

i (x, ξi), i ∈ I with the initial condition x(0) by
x(t) = ϕi(t, x(0), ξi) for all t ≥ 0 in the maximal interval
of existence. Since the family of control inputs has been
specified, one can present a set of guards {Ŝi→µ(i)}i∈I ⊂ X
for the closed-loop hybrid model of walking on which the
discrete transitions i → µ(i) occur. The time-to-switching
function is defined as Ti : Xi × Ξi → R>0, i ∈ I by

Ti (x(0), ξi) := inf{t > 0 |ϕi (t, x(0), ξi) ∈ Ŝi→µ(i)}

as the first time at which the solution ϕi (t, x(0), ξi) inter-
sects the switching surface Ŝi→µ(i). We then define the flow
of Phase i as Pi : Ŝµ−1(i)→i × Ξi → Ŝi→µ(i) by

Pi (x, ξi)

:= ϕi
(
Ti
(
∆µ−1(i)→i (x) , ξi

)
,∆µ−1(i)→i (x) , ξi

)
,

where µ−1(.) represents the inverse of the next phase func-
tion µ(.). The Poincaré return map is finally defined as
P : Ŝ1→2 × Ξ→ Ŝ1→2 by the following composition rule

P (x, ξ) := P1 (P3 (P2 (x, ξ2) , ξ3) , ξ1) (14)

that describes the evolution of the mechanical system on the
Poincaré section Ŝ1→2 according to the following discrete-
time system

x[k + 1] = P (x[k], ξ) , k = 0, 1, · · · . (15)

From the construction procedure and the invariance condi-
tion, x?1 is an invariant fixed-point of the Poincaré map P ,
that is, P (x?1, ξ) = x?1 for all ξ ∈ Ξ. Linearization of (15)
around the fixed point x?1 then yields1

δx[k + 1] =
∂P

∂x
(x?1, ξ) δx[k], (16)

where δx[k] := x[k]− x?1.
Problem 1: (Exponential Stabilization): The problem of

exponential stabilization consists of finding the controller
parameters ξ =

(
ξ>1 , ξ

>
2 , ξ

>
3

)>
such that the eigenvalues of

the Jacobian matrix A(ξ) := ∂P
∂x (x?1, ξ) lie inside the unit

circle.

B. Iterative BMI Algorithm

Using the Schur complement lemma, it can be shown that
Problem 1 is equivalent to the existence of W = W> >
0 and γ ∈ (0, 1) such that the following nonlinear matrix
inequality (NMI) is satisfied[

W A (ξ)W
? (1− γ)W

]
> 0. (17)

In particular, V (δx) := δx>W−1δx is a Lyapunov candidate
for (16) such that V [k + 1]− V [k] < −γ V [k]. Here, 1− γ
is an upper bound on the spectral radius of the Jacobian
matrix A(ξ) to tune the convergence rate of solutions of
the discrete-time system (15) to the fixed point x?1. There is
no closed-form expression for the high-dimensional Jacobian
matrix A(ξ), which complicates the design of the controller
parameters ξ. In order to find a stabilizing set of controller
parameters ξ satisfying the NMI (17), we employ the itera-
tive BMI algorithm developed in [37]. The BMI algorithm
designs a sequence of controller parameters {ξ`}, where the
superscript ` ∈ {0, 1, 2, · · · } represents the iteration number.
The objective is to converge to a set of parameters ξ` that
solve Problem 1 or equivalently (17). The algorithm has the
following three steps.

Step 1 (Sensitivity Analysis): During the iteration number
`, we approximate the Jacobian matrix A

(
ξ` + ∆ξ

)
with its

first-order Taylor series expansion, that is,

A
(
ξ` + ∆ξ

)
≈ A

(
ξ`
)

+ Ā
(
ξ`
)

(I ⊗∆ξ)

=: Â
(
ξ`,∆ξ

)
, (18)

1Since dim(Ŝ1→2) = dim(X1) − 1 = 2(nq − 3) − 1, the Jacobian
matrix ∂P

∂x

(
x?1, ξ

)
is indeed an (2nq − 7)× (2nq − 7) matrix that maps

the tangent space Tx?
1
Ŝ1→2 back to itself.
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where “⊗” represents the Kronecker product and ∆ξ is a
sufficiently small increment in controller parameters. An ef-
fective numerical approach to compute the sensitivity matrix
Ā
(
ξ`
)

based on the variational equation has been developed
in [30, Theorem 2]. The objective of the sensitivity analysis
is to replace the nonlinear matrix A

(
ξ` + ∆ξ

)
with its first-

order approximation Â
(
ξ`,∆ξ

)
that is an affine function in

terms of ∆ξ. This will reduce the NMI of (17) into a BMI in
Step 2 that can be effectively solved with available software
packages such as PENBMI [47].

Step 2 (BMI Optimization Problem): The objective of the
BMI optimization problem is to solve for the increment in
controller parameters ∆ξ such that the eigenvalues of the
approximated Jacobian matrix Â

(
ξ`,∆ξ

)
lie inside the unit

circle. In particular, we setup the following BMI optimization
problem:

min
(W,∆ξ,η,γ)

− w γ + η (19)

s.t.
[
W Â

(
ξ`,∆ξ

)
W

? (1− γ)W

]
> 0 (20)[

I ∆ξ
? η

]
> 0 (21)

γ > 0, (22)

where (20) is a BMI condition, and from the LMI (21)
and the Schur complement lemma, η is an upper bound
on the 2-norm of ∆ξ, i.e., η > ‖∆ξ‖22. The cost function
(19) then minimizes a weighted sum of −γ and µ with the
weighting factor w > 0 as a tradeoff between improving
the convergence rate and minimizing η to have a good
approximation based on the Taylor series expansion.

Step 3 (Iteration): Let us assume that(
W `?,∆ξ`?, η`?, γ`?

)
represent a local minimum (not

necessarily a global solution) for the BMI optimization
problem (19)-(22). Then, Step 3 updates the controller
parameters for the next iteration as

ξ`+1 = ξ` + ∆ξ`?. (23)

If the requirements of Problem 1 are satisfied at ξ = ξ`+1,
the algorithm is successful and stops. Otherwise, it continues
by coming back to Step 1 (sensitivity analysis around ξ`+1).
If the BMI optimization problem in Step 2 is not feasible,
the algorithm is not successful and stops.

C. Convergence of the Iterative BMI Algorithm

Our previous work in [37] presented a set of sufficient
conditions to guarantee the convergence of the iterative algo-
rithm to a stabilizing solution. These conditions were devel-
oped based on the third-order derivative of the Poincaré map
and require extensive computational burden. This section
however presents an alternative set of sufficient conditions
for the finite-time convergence of the algorithm that can be
effectively verified. The new conditions are based on the
second-order derivative of the Poincaré map. In particular, we
assume a convex-hull of the approximate Jacobian matrices
during the previous iterations and if the current real Jacobian

matrix takes values in this convex-hull, the algorithm suc-
cessfully converges. To make this statement clear, we present
the following theorem.

Theorem 1 (Finite Time Convergence): Assume that As-
sumptions 1-3 are satisfied. Suppose that the BMI optimiza-
tion problem (19)-(22) is feasible during N iterations for
some positive integer N . Let {ξ`}N`=0 denote the generated
sequence of controller parameters from the initial guess
ξ0, i.e., ξ` = ξ0 +

∑`−1
j=0 ∆ξj?, ` ∈ {1, 2, · · · , N}, and

Â` := Â
(
ξ`,∆ξ`?

)
represent the approximated Jacobian

matrix during the iteration ` ∈ {0, 1, · · · , N−1}. Define the
following convex-hull of approximated Jacobian matrices

A :=

{
N−1∑
`=0

α` Â
`
∣∣∣α` ≥ 0, ` = 0, · · · , N − 1,

N−1∑
`=0

α` = 1

}
.

If A
(
ξN
)
∈ A, then ξ = ξN forms a set of stabilizing

controller parameters satisfying Problem 1.
Proof: From the feasibility of the BMI optimization

problem (19)-(22), V (δx) = δx>
(
W `?

)−1
δx is a Lyapunov

function for the discrete-time system δx[k + 1] = Â` δx[k].
Since A

(
ξN
)

=
∑N−1
`=0 α` Â

`, from [48, Theorem 2],
one can conclude that V (δx) = δx>Qδx is Lyapunov
function for δx[k + 1] = A

(
ξN
)
δx[k], where Q :=∑N−1

`=0 α`
(
W `?

)−1
. This completes the exponential stability

of the periodic orbit O as stated in Problem 1.

V. NUMERICAL ANALYSIS AND SIMULATIONS

This section employs the iterative BMI algorithm to look
for virtual constraints that exponentially stabilize walking
gaits for a multi-domain hybrid model of a 3D bipedal robot.

A. 3D Robot Model

The robot model consists of a rigid tree structure with
a torso link and two identical legs terminating at nontrivial
feet (see Fig. 2). Each leg of the robot includes 4 actuated
joints: a 2 DOF hip (ball) joint with roll and pitch motions,
a 1 DOF knee joint in the sagittal plane, plus a 1 DOF ankle
joint in the sagittal plane (no ankle joint in the frontal plane).
During the flight phase, the mechanical system has nq = 14
DOFs with m = 8 actuators. To describe the configuration
variables, we rigidly attach a frame to the torso link with the
z-axis being upward and the y-axis being in the direction of
walking. Three position variables are assigned to describe
the translational motion of the torso frame with respect to a
world frame. The orientation of the torso frame with respect
to the ground is then described by three Euler angles, referred
to as the yaw, roll, and pitch angles. The remaining eight
configuration variables are assigned to the actuated joints
of the legs. The mechanical system has 3 and 1 degrees
of underactuation during Phases 1 and 3, respectively. The
kinematic and dynamic parameter values for the links are
taken according to those reported in [49] from a human
cadaver study. A desired periodic gait O is designed using
the motion planning algorithm of [14] for walking at 0.8
(m/s). The controller parameters to be determined include
the columns of the output matrices H1 ∈ R8×14, H2 ∈
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R7×14, and H3 ∈ R8×14 together with the columns of the
gain matrix K2 ∈ R1×28. However, we set the columns
corresponding to the translational motions to zero and just
look for the columns corresponding to the torso Euler angles
and internal shape variables. In particular, we solve for 275
(i.e., (8 + 7 + 8) × 11 + 22) parameters, i.e., ξ ∈ R275. It
can be shown that using this assumption, the state feedback
laws Γi (x, ξi) do not depend on the translational position
and velocity measurements.

B. PENBMI Solver

BMIs are NP-hard problems. However, PENBMI is a
general purpose and local solver which guarantees the con-
vergence to a critical point satisfying the Karush-Kuhn-
Tucker optimality conditions [47]. We start with an initial
guess ξ0 for which the controlled variables, i.e., Hiq for i ∈
I, only include the shape variables. The controller gain K2

embedded in ξ0 is also set to zero. For this set of controller
parameters, the spectral radius of the 21×21 Jacobian matrix
A
(
ξ0
)

becomes 4.7536, and hence, the gait is unstable.
To exponentially stabilize the gait, we employ the iterative
BMI algorithm, in which the BMI optimization problem is
solved with PENBMI solver from TOMLAB [50] integrated
with MATLAB environment through YALMIP [51]. The
BMI optimization procedure on a computer with a dual 2.3
GHz Intel Xeon E5-2670 v3 processor takes approximately
20 minutes. After 8 iterations, the algorithm successfully
converges to a stabilizing feedback control solution for which
the spectral radius of the Jacobian matrix becomes 0.8572.
Figure 2 depicts the phase portraits of the BMI optimized
closed-loop system. Here, the simulation starts off of the
orbit at the beginning of the right stance phase. Convergence
to the periodic orbit even in the yaw component is clear.
The animation of this simulation together with the optimal
controller parameters can be found at [52].

VI. CONCLUSIONS

This paper presented an algorithm to systematically de-
sign continuous-time controllers that exponentially stabilize
periodic gaits for multi-domain hybrid models of bipedal
walking. The algorithm considers a general form of pa-
rameterized and nonlinear feedback controllers for different
phases of the walking cycle. The exponential stabilization
problem and Poincaré map are investigated to extend the
BMI optimization approach for the stabilization of multi-
domain hybrid periodic orbits. The algorithm is based on an
iterative sequence of optimization problems involving BMIs
and LMIs. A new set of sufficient conditions are presented to
guarantee the convergence of the algorithm to a stabilizing
solution at a finite number of iterations. The conditions can
be effectively verified and require less computational effort
compared to those of [37]. The numerical results illustrate
the power of the algorithm in designing stabilizing virtual
constraint controllers for dynamic walking of a 3D human
model with 28 state variables and 275 control parameters.
For future research, we will investigate the scalability and
capability of the algorithm in stabilizing periodic orbits
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Fig. 2: Phase portraits for the torso Euler angles (yaw, roll
and pitch) during 100 consecutive steps of 3D anthropomor-
phic walking with the BMI optimized feedback controllers
together with the structure of the 14 DOFs bipedal robot.
“DP”, “P1”, “P2”, and “P3” stand for the discrete-time
phases, Phase 1, Phase 2, and Phase 3, respectively.

for multi-contact bipedal walking gaits with frontal ankle
joints. We will also study the capability of the algorithm
in designing H2 and H∞ controllers for walking on rough
terrain [53]. An alternative future direction will be extending
the work of [37] to design decentralized nonlinear feedback
controllers for anthropomorphic multi-contact walking with
application to powered prosthetic legs.
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