3 research outputs found

    A new swarm intelligence information technique for improving information balancedness on the skin lesions segmentation

    Get PDF
    Methods of image processing can recognize the images of melanoma lesions border in addition to the disease compared to a skilled dermatologist. New swarm intelligence technique depends on meta-heuristic that is industrialized to resolve composite real problems which are problematic to explain by the available deterministic approaches. For an accurate detection of all segmentation and classification of skin lesions, some dealings should be measured which contain, contrast broadening, irregularity quantity, choice of most optimal features, and so into the world. The price essential for the action of progressive disease cases is identical high and the survival percentage is low. Many electronic dermoscopy classifications are advanced depend on the grouping of form, surface and dye features to facilitate premature analysis of malignance. To overcome this problematic, an effective prototypical for accurate boundary detection and arrangement is obtainable. The projected classical recovers the optimization segment of accuracy in its pre-processing stage, applying contrast improvement of lesion area compared to the contextual. In conclusion, optimized features are future fed into of artifical bee colony (ABC) segmentation. Wide-ranging researches have been supported out on four databases named as, ISBI (2016, 2017, 2018) and PH2. Also, the selection technique outclasses and successfully indifferent the dismissed features. The paper shows a different process for lesions optimal segmentation that could be functional to a variation of images with changed possessions and insufficiencies is planned with multistep pre-processing stage

    Improved Wolf Pack Algorithm for Optimum Design of Truss Structures

    Get PDF
    In order to find a more effective method in structural optimization, an improved wolf pack optimization algorithm was proposed. In the traditional wolf pack algorithm, the problem of falling into local optimum and low precision often occurs. Therefore, the adaptive step size search and Levy's flight strategy theory were employed to overcome the premature flaw of the basic wolf pack algorithm. Firstly, the reasonable change of the adaptive step size improved the fineness of the search and effectively accelerated the convergence speed. Secondly, the search strategy of Levy's flight was adopted to expand the search scope and improved the global search ability of the algorithm. At last, to verify the performance of improved wolf pack algorithm, it was tested through simulation experiments and actual cases, and compared with other algorithms. Experiments show that the improved wolf pack algorithm has better global optimization ability. This study provides a more effective solution to structural optimization problems

    A hybrid approach to artificial bee colony algorithm

    No full text
    In this paper, we put forward a hybrid approach based on the life cycle for the artificial bee colony algorithm to generate dynamical varying population as well as ensure appropriate balance between exploration and exploitation. The bee life-cycle model is firstly constructed, which means that each individual can reproduce or die dynamically throughout the searching process and population size can dynamically vary during execution. With the comprehensive learning, the bees incorporate the information of global best solution into the search equation for exploration, while the Powell’s search enables the bees deeply to exploit around the promising area. Finally, we instantiate a hybrid artificial bee colony (HABC) optimizer based on the proposed model, namely HABC. Comprehensive test experiments based on the well-known CEC 2014 benchmarks have been carried out to compare the performance of HABC against other bio-mimetic algorithms. Our numerical results prove the effectiveness of the proposed hybridization scheme and demonstrate the performance superiority of the proposed algorithm
    corecore