2,239 research outputs found

    Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    Full text link
    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for {\em ab initio} electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal block preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods

    High-Performance Solvers for Dense Hermitian Eigenproblems

    Full text link
    We introduce a new collection of solvers - subsequently called EleMRRR - for large-scale dense Hermitian eigenproblems. EleMRRR solves various types of problems: generalized, standard, and tridiagonal eigenproblems. Among these, the last is of particular importance as it is a solver on its own right, as well as the computational kernel for the first two; we present a fast and scalable tridiagonal solver based on the Algorithm of Multiple Relatively Robust Representations - referred to as PMRRR. Like the other EleMRRR solvers, PMRRR is part of the freely available Elemental library, and is designed to fully support both message-passing (MPI) and multithreading parallelism (SMP). As a result, the solvers can equally be used in pure MPI or in hybrid MPI-SMP fashion. We conducted a thorough performance study of EleMRRR and ScaLAPACK's solvers on two supercomputers. Such a study, performed with up to 8,192 cores, provides precise guidelines to assemble the fastest solver within the ScaLAPACK framework; it also indicates that EleMRRR outperforms even the fastest solvers built from ScaLAPACK's components

    Numerical Methods for the QCD Overlap Operator:III. Nested Iterations

    Full text link
    The numerical and computational aspects of chiral fermions in lattice quantum chromodynamics are extremely demanding. In the overlap framework, the computation of the fermion propagator leads to a nested iteration where the matrix vector multiplications in each step of an outer iteration have to be accomplished by an inner iteration; the latter approximates the product of the sign function of the hermitian Wilson fermion matrix with a vector. In this paper we investigate aspects of this nested paradigm. We examine several Krylov subspace methods to be used as an outer iteration for both propagator computations and the Hybrid Monte-Carlo scheme. We establish criteria on the accuracy of the inner iteration which allow to preserve an a priori given precision for the overall computation. It will turn out that the accuracy of the sign function can be relaxed as the outer iteration proceeds. Furthermore, we consider preconditioning strategies, where the preconditioner is built upon an inaccurate approximation to the sign function. Relaxation combined with preconditioning allows for considerable savings in computational efforts up to a factor of 4 as our numerical experiments illustrate. We also discuss the possibility of projecting the squared overlap operator into one chiral sector.Comment: 33 Pages; citations adde

    Taylor expansion and the Cauchy Residue Theorem for finite-density QCD

    Full text link
    We present an update on our efforts to determine the Taylor coefficients of the μ/T\mu/T expansion of the pressure for finite-density QCD. Here, we explore alternatives based on the Cauchy Residue Theorem, which allows us to use a discretized contour to determine the desired spectral moments occurring in the Taylor expansion of QCD at zero chemical potential.Comment: 6 pages, 4 figures, talk presented at the 36th Annual International Symposium on Lattice Field Theory, July 22-28, 2018, East Lansing, MI, US

    Multigrid accelerated simulations for Twisted Mass fermions

    Full text link
    Simulations at physical quark masses are affected by the critical slowing down of the solvers. Multigrid preconditioning has proved to deal effectively with this problem. Multigrid accelerated simulations at the physical value of the pion mass are being performed to generate Nf=2N_f = 2 and Nf=2+1+1N_f = 2 + 1 + 1 gauge ensembles using twisted mass fermions. The adaptive aggregation-based domain decomposition multigrid solver, referred to as DD-α\alphaAMG method, is employed for these simulations. Our simulation strategy consists of an hybrid approach of different solvers, involving the Conjugate Gradient (CG), multi-mass-shift CG and DD-α\alphaAMG solvers. We present an analysis of the multigrid performance during the simulations discussing the stability of the method. This significant speeds up the Hybrid Monte Carlo simulation by more than a factor 44 at physical pion mass compared to the usage of the CG solver.Comment: 8 pages, 5 figures, proceedings for LATTICE 201
    • …
    corecore