2,326 research outputs found

    UAV/UGV Autonomous Cooperation: UAV Assists UGV to Climb a Cliff by Attaching a Tether

    Full text link
    This paper proposes a novel cooperative system for an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which utilizes the UAV not only as a flying sensor but also as a tether attachment device. Two robots are connected with a tether, allowing the UAV to anchor the tether to a structure located at the top of a steep terrain, impossible to reach for UGVs. Thus, enhancing the poor traversability of the UGV by not only providing a wider range of scanning and mapping from the air, but also by allowing the UGV to climb steep terrains with the winding of the tether. In addition, we present an autonomous framework for the collaborative navigation and tether attachment in an unknown environment. The UAV employs visual inertial navigation with 3D voxel mapping and obstacle avoidance planning. The UGV makes use of the voxel map and generates an elevation map to execute path planning based on a traversability analysis. Furthermore, we compared the pros and cons of possible methods for the tether anchoring from multiple points of view. To increase the probability of successful anchoring, we evaluated the anchoring strategy with an experiment. Finally, the feasibility and capability of our proposed system were demonstrated by an autonomous mission experiment in the field with an obstacle and a cliff.Comment: 7 pages, 8 figures, accepted to 2019 International Conference on Robotics & Automation. Video: https://youtu.be/UzTT8Ckjz1

    The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots

    Full text link
    This review considers a problem in the development of mobile robot adhesion methods with vertical surfaces and the appropriate locomotion mechanism design. The evolution of adhesion methods for wall-climbing robots (based on friction, magnetic forces, air pressure, electrostatic adhesion, molecular forces, rheological properties of fluids and their combinations) and their locomotion principles (wheeled, tracked, walking, sliding framed and hybrid) is studied. Wall-climbing robots are classified according to the applications, adhesion methods and locomotion mechanisms. The advantages and disadvantages of various adhesion methods and locomotion mechanisms are analyzed in terms of mobility, noiselessness, autonomy and energy efficiency. Focus is placed on the physical and technical aspects of the adhesion methods and the possibility of combining adhesion and locomotion methods

    Crash-perching on vertical poles with a hugging-wing robot

    Full text link
    Perching with winged Unmanned Aerial Vehicles has often been solved by means of complex control or intricate appendages. Here, we present a simple yet novel method that relies on passive wing morphing for crash-landing on trees and other types of vertical poles. Inspired by the adaptability of animals' and bats' limbs in gripping and holding onto trees, we design dual-purpose wings that enable both aerial gliding and perching on poles. With an upturned nose design, the robot can passively reorient from horizontal flight to vertical upon a head-on crash with a pole, followed by hugging with its wings to perch. We characterize the performance of reorientation and perching in terms of impact speed and angle, pole material, and size. The robot robustly reorients at impact angles above 15{\deg} and speeds of 3 m/s to 9 m/s, and can hold onto various pole types larger than 28% of its wingspan in diameter. We demonstrate crash-perching on tree trunks with an overall success rate of 71%. The method opens up new possibilities for the use of aerial robots in applications such as inspection, maintenance, and biodiversity conservation.Comment: 14 pages, 6 figures. Supplementary material available. Under review at Communications Engineerin

    Shape-based compliance control for snake robots

    Get PDF
    I serpenti robot sono una classe di meccanismi iper-ridondanti che appartiene alla robotica modulare. Grazie alla loro forma snella ed allungata e all'alto grado di ridondanza possono muoversi in ambienti complessi con elevata agilità. L'abilità di spostarsi, manipolare e adattarsi efficientemente ad una grande varietà di terreni li rende ideali per diverse applicazioni, come ad esempio attività di ricerca e soccorso, ispezione o ricognizione. I robot serpenti si muovono nello spazio modificando la propria forma, senza necessità di ulteriori dispositivi quali ruote od arti. Tali deformazioni, che consistono in movimenti ondulatori ciclici che generano uno spostamento dell'intero meccanismo, vengono definiti andature. La maggior parte di esse sono ispirate al mondo naturale, come lo strisciamento, il movimento laterale o il movimento a concertina, mentre altre sono create per applicazioni specifiche, come il rotolamento o l'arrampicamento. Un serpente robot con molti gradi di libertà deve essere capace di coordinare i propri giunti e reagire ad ostacoli in tempo reale per riuscire a muoversi efficacemente in ambienti complessi o non strutturati. Inoltre, aumentare la semplicità e ridurre il numero di controllori necessari alla locomozione alleggerise una struttura di controllo che potrebbe richiedere complessità per ulteriori attività specifiche. L'obiettivo di questa tesi è ottenere un comportamento autonomo cedevole che si adatti alla conformazione dell'ambiente in cui il robot si sta spostando, accrescendo le capacità di locomozione del serpente robot. Sfruttando la cedevolezza intrinseca del serpente robot utilizzato in questo lavoro, il SEA Snake, e utilizzando un controllo che combina cedevolezza attiva ad una struttura di coordinazione che ammette una decentralizzazione variabile del robot, si dimostra come tre andature possano essere modificate per ottenere una locomozione efficiente in ambienti complessi non noti a priori o non modellabili

    City-Climber: A New Generation Wall-Climbing Robots

    Get PDF

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Design, Build, and Control of a Climbing Robot for Irregular Surface Geometry

    Get PDF
    Climbing robots are ideal for situations were maintenance and inspection tasks can cause people to be in dangerous situations or require them to be present for extended periods of time. Applications include inspection, testing, civil construction, cleaning, transport and security. The focus of this thesis was on robots that used pneumatic means to attain adhesion and wheels for locomotion. Research objectives include designing or utilizing a pneumatic based adhesion method to allow the robot to stick to concrete, brick, glass, or other such surfaces; climb on a surface with the lowest possible coefficient of friction between it and the robot; have the ability to overcome a step-like obstacle while climbing; use a single body to passively transition through sharp surface changes while climbing; have the ability to traverse over a gap-type obstacle while climbing without loss of adhesion or mobility. To complete the objectives, a test rig was created that comprised of three surfaces that were hinged together and could be locked into place using aluminum struts at the hinge joint. Different material pallets were created and adhered to plywood that was then mounted to the test rig with screws. The robot was designed and built around laser cut and 3D printed parts. From the experiments it was found that the robot could adhere to a glass surface with a coefficient of friction of 0.43 between it and the glass. Furthermore it was able to overcome a 15mm tall speedbump while climbing without loss of adhesion as well as being able to passively transition between surfaces that had an acute angle of 80° between them and do wall to ceiling transitions. Finally the robot was able to pass over a 55mm gap that was 23mm deep while climbing on a concrete surface. It was concluded that by using thrust based adhesion the robot could handle a diverse array of surfaces and even gain greater ability to overcome obstacles while climbing. Future directions would improve on the robot by adding treads or multiple bodies to improve its base abilities
    • …
    corecore