6 research outputs found

    Error Characterization and Correction Techniques for Reliable STT-RAM Designs

    Get PDF
    The concerns on the continuous scaling of mainstream memory technologies have motivated tremendous investment to emerging memories. Being a promising candidate, spin-transfer torque random access memory (STT-RAM) offers nanosecond access time comparable to SRAM, high integration density close to DRAM, non-volatility as Flash memory, and good scalability. It is well positioned as the replacement of SRAM and DRAM for on-chip cache and main memory applications. However, reliability issue continues being one of the major challenges in STT-RAM memory designs due to the process variations and unique thermal fluctuations, i.e., the stochastic resistance switching property of magnetic devices. In this dissertation, I decoupled the reliability issues as following three-folds: First, the characterization of STT-RAM operation errors often require expensive Monte-Carlo runs with hybrid magnetic-CMOS simulation steps, making it impracticable for architects and system designs; Second, the state of the art does not have sufficiently understanding on the unique reliability issue of STT-RAM, and conventional error correction codes (ECCs) cannot efficiently handle such errors; Third, while the information density of STT-RAM can be boosted by multi-level cell (MLC) design, the more prominent reliability concerns and the complicated access mechanism greatly limit its applications in memory subsystems. Thus, I present a novel through solution set to both characterize and tackle the above reliability challenges in STT-RAM designs. In the first part of the dissertation, I introduce a new characterization method that can accurately and efficiently capture the multi-variable design metrics of STT-RAM cells; Second, a novel ECC scheme, namely, content-dependent ECC (CD-ECC), is developed to combat the characterized asymmetric errors of STT-RAM at 0->1 and 1->0 bit flipping's; Third, I present a circuit-architecture design, namely state-restricted multi-level cell (SR-MLC) STT-RAM design, which simultaneously achieves high information density, good storage reliability and fast write speed, making MLC STT-RAM accessible for system designers under current technology node. Finally, I conclude that efficient robust (or ECC) designs for STT-RAM require a deep holistic understanding on three different levels-device, circuit and architecture. Innovative ECC schemes and their architectural applications, still deserve serious research and investigation in the near future

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Resistive-RAM for Data Storage Applications.

    Full text link
    Mainstream non-volatile memory technology, dominated by the floating gate transistor, has historically improved in density, performance and cost primarily by means of process scaling. This simple geometrical scaling now faces significant challenges due to constraints of electrostatics and reliability. Thus, novel non-transistor based memory paradigms are being widely explored. Among the various contenders for next generation storage technology, RRAM devices have got immense attention due to their high-speed, multilevel capability, scalability, simple structure, low voltage operation and high endurance. In this thesis, electrical and material characterization is carried out on a MIM device system and formation / annihilation of nanoscale filaments is shown to be the reason behind the resistance switching. The MIM system is optimized to include an in-cell resistor which is shown to improve device endurance and reduce stuck-at-one faults. For highest density, the devices were arranged in a crossbar geometry and vertically integrated on CMOS decoders to demonstrate the feasibility of practical data storage applications. Next, we show that these binary RRAM devices exhibit native stochastic nature of resistive switching. Even for a fixed voltage on the same device, the wait time associated with programming is not fixed and is random and broadly distributed. However, the probability of switching can be predicted and controlled by the programming pulse. These binary devices have been used to generate random bit-streams with predicable bias ratios in time and space domains. The ability to produce random bit-streams using binary resistive switching devices based on the native stochastic switching principle may potentially lead to novel non-von-Neumann computing paradigms. Further, sub-1nA operating current devices have been developed. This ultra-low current provides energy savings by minimizing programming, erase and read currents. Despite having such low currents, excellent retention, on/off ratio and endurance have been demonstrated. Finally a scalable approach to simple 3D stacking is discussed. By implementation of a vertical sidewall-based architecture, the number of critical lithography steps can be reduced. A vertical device structure based on a W / WOx / Pd material system is developed. This scalable architecture is well suited for development of analog memory and neuromorphic systems.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110461/1/sidgaba_1.pd

    SPATIAL TRANSFORMATION PATTERN DUE TO COMMERCIAL ACTIVITY IN KAMPONG HOUSE

    Get PDF
    ABSTRACT Kampung houses are houses in kampung area of the city. Kampung House oftenly transformed into others use as urban dynamics. One of the transfomation is related to the commercial activities addition by the house owner. It make house with full private space become into mixused house with more public spaces or completely changed into full public commercial building. This study investigate the spatial transformation pattern of the kampung houses due to their commercial activities addition. Site observations, interviews and questionnaires were performed to study the spatial transformation. This study found that in kampung houses, the spatial transformation pattern was depend on type of commercial activities and owner perceptions, and there are several steps of the spatial transformation related the commercial activity addition. Keywords: spatial transformation pattern; commercial activity; owner perception, kampung house; adaptabilit
    corecore