5,298 research outputs found

    Maximizing Activity in Ising Networks via the TAP Approximation

    Full text link
    A wide array of complex biological, social, and physical systems have recently been shown to be quantitatively described by Ising models, which lie at the intersection of statistical physics and machine learning. Here, we study the fundamental question of how to optimize the state of a networked Ising system given a budget of external influence. In the continuous setting where one can tune the influence applied to each node, we propose a series of approximate gradient ascent algorithms based on the Plefka expansion, which generalizes the na\"{i}ve mean field and TAP approximations. In the discrete setting where one chooses a small set of influential nodes, the problem is equivalent to the famous influence maximization problem in social networks with an additional stochastic noise term. In this case, we provide sufficient conditions for when the objective is submodular, allowing a greedy algorithm to achieve an approximation ratio of 1−1/e1-1/e. Additionally, we compare the Ising-based algorithms with traditional influence maximization algorithms, demonstrating the practical importance of accurately modeling stochastic fluctuations in the system

    Neural network setups for a precise detection of the many-body localization transition: finite-size scaling and limitations

    Full text link
    Determining phase diagrams and phase transitions semi-automatically using machine learning has received a lot of attention recently, with results in good agreement with more conventional approaches in most cases. When it comes to more quantitative predictions, such as the identification of universality class or precise determination of critical points, the task is more challenging. As an exacting test-bed, we study the Heisenberg spin-1/2 chain in a random external field that is known to display a transition from a many-body localized to a thermalizing regime, which nature is not entirely characterized. We introduce different neural network structures and dataset setups to achieve a finite-size scaling analysis with the least possible physical bias (no assumed knowledge on the phase transition and directly inputing wave-function coefficients), using state-of-the-art input data simulating chains of sizes up to L=24. In particular, we use domain adversarial techniques to ensure that the network learns scale-invariant features. We find a variability of the output results with respect to network and training parameters, resulting in relatively large uncertainties on final estimates of critical point and correlation length exponent which tend to be larger than the values obtained from conventional approaches. We put the emphasis on interpretability throughout the paper and discuss what the network appears to learn for the various used architectures. Our findings show that a it quantitative analysis of phase transitions of unknown nature remains a difficult task with neural networks when using the minimally engineered physical input.Comment: v2: published versio
    • 

    corecore