3 research outputs found

    A high-SNR normal approximation for single-antenna Rayleigh block-fading channels

    Get PDF
    Proceeding of: 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 25-30 June, 2017This paper concerns the maximal achievable rate at which data can be transmitted over a non-coherent, single-antenna, Rayleigh block-fading channel using an error-correcting code of a given blocklength with a block-error probability not exceeding a given value. In particular, a high-SNR normal approximation of the maximal achievable rate is presented that becomes accurate as the signal-to-noise ratio (SNR) and the number of coherence intervals L over which we code tend to infinity. Numerical analyses suggest that the approximation is accurate already at SNR values of 15 dB.A. Lancho and T. Koch have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 714161), from the 7th European Union Framework Programme under Grant 333680, from the Spanish Ministerio de Economía y Competitividad under Grants TEC2013-41718-R, RYC-2014-16332 and TEC2016-78434-C3-3-R (AEI/FEDER, EU), from an FPU fellowship from the Spanish Ministerio de Educación, Cultura y Deporte under Grant FPU14/01274 and from the Comunidad de Madrid under Grant S2103/ICE-2845. G. Durisi has been supported by the Swedish Research Council under Grants 2012-4571 and 2016-03293

    Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or Noncoherent Transmission?

    Get PDF
    We present nonasymptotic upper and lower bounds on the maximum coding rate achievable when transmitting short packets over a Rician memoryless block-fading channel for a given requirement on the packet error probability. We focus on the practically relevant scenario in which there is no \emph{a priori} channel state information available at the transmitter and at the receiver. An upper bound built upon the min-max converse is compared to two lower bounds: the first one relies on a noncoherent transmission strategy in which the fading channel is not estimated explicitly at the receiver; the second one employs pilot-assisted transmission (PAT) followed by maximum-likelihood channel estimation and scaled mismatched nearest-neighbor decoding at the receiver. Our bounds are tight enough to unveil the optimum number of diversity branches that a packet should span so that the energy per bit required to achieve a target packet error probability is minimized, for a given constraint on the code rate and the packet size. Furthermore, the bounds reveal that noncoherent transmission is more energy efficient than PAT, even when the number of pilot symbols and their power is optimized. For example, for the case when a coded packet of 168168 symbols is transmitted using a channel code of rate 0.480.48 bits/channel use, over a block-fading channel with block size equal to 88 symbols, PAT requires an additional 1.21.2 dB of energy per information bit to achieve a packet error probability of 10310^{-3} compared to a suitably designed noncoherent transmission scheme. Finally, we devise a PAT scheme based on punctured tail-biting quasi-cyclic codes and ordered statistics decoding, whose performance are close (11 dB gap at 10310^{-3} packet error probability) to the ones predicted by our PAT lower bound. This shows that the PAT lower bound provides useful guidelines on the design of actual PAT schemes.Comment: 30 pages, 5 figures, journa
    corecore