269 research outputs found

    3D high definition video coding on a GPU-based heterogeneous system

    Get PDF
    H.264/MVC is a standard for supporting the sensation of 3D, based on coding from 2 (stereo) to N views. H.264/MVC adopts many coding options inherited from single view H.264/AVC, and thus its complexity is even higher, mainly because the number of processing views is higher. In this manuscript, we aim at an efficient parallelization of the most computationally intensive video encoding module for stereo sequences. In particular, inter prediction and its collaborative execution on a heterogeneous platform. The proposal is based on an efficient dynamic load balancing algorithm and on breaking encoding dependencies. Experimental results demonstrate the proposed algorithm's ability to reduce the encoding time for different stereo high definition sequences. Speed-up values of up to 90× were obtained when compared with the reference encoder on the same platform. Moreover, the proposed algorithm also provides a more energy-efficient approach and hence requires less energy than the sequential reference algorith

    A flexible heterogeneous hardware/software solution for real-time high-definition H.264 motion estimation

    Get PDF
    International audienceThe MPEG-4 AVC/H.264 video compression standard introduces a high degree of motion estimation complexity. Quarter-pixel accuracy and variable block-size significantly enhance compression performances over previous standards, but increase computation requirements. Firstly, a DSP-based solution achieves real-time integer motion estimation. Nevertheless, fractional-pixel refinement is too computationally intensive to be efficiently processed on a software-based processor. Secondly, to address this restriction, a flexible and low complexity VLSI sub-pixel refinement coprocessor is designed. Thanks to an improved datapath, a high throughput is achieved with low logic resources. Finally, we propose a heterogeneous (DSP-FPGA) solution to handle real-time motion estimation with variable block-size and fractional-pixel accuracy for high-definition video. It combines efficiency and programmability. The flexibility offers complexity versus performance trade-offs. The system achieves motion estimation of 720p sequences at up to 60 frames per second

    Optimization of the motion estimation for parallel embedded systems in the context of new video standards

    Get PDF
    15 pagesInternational audienceThe effciency of video compression methods mainly depends on the motion compensation stage, and the design of effcient motion estimation techniques is still an important issue. An highly accurate motion estimation can significantly reduce the bit-rate, but involves a high computational complexity. This is particularly true for new generations of video compression standards, MPEG AVC and HEVC, which involves techniques such as different reference frames, sub-pixel estimation, variable block sizes. In this context, the design of fast motion estimation solutions is necessary, and can concerned two linked aspects: a high quality algorithm and its effcient implementation. This paper summarizes our main contributions in this domain. In particular, we first present the HME (Hierarchical Motion Estimation) technique. It is based on a multi-level refinement process where the motion estimation vectors are first estimated on a sub-sampled image. The multi-levels decomposition provides robust predictions and is particularly suited for variable block sizes motion estimations. The HME method has been integrated in a AVC encoder, and we propose a parallel implementation of this technique, with the motion estimation at pixel level performed by a DSP processor, and the sub-pixel refinement realized in an FPGA. The second technique that we present is called HDS for Hierarchical Diamond Search. It combines the multi-level refinement of HME, with a fast search at pixel-accuracy inspired by the EPZS method. This paper also presents its parallel implementation onto a multi-DSP platform and the its use in the HEVC context

    High performance hardware architecture for half-pixel accurate H.264 motion estimation

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of half-pel accurate variable block size motion estimation for H.264 / MPEG4 Part 10 video coding. The proposed architecture includes a novel half-pel interpolation hardware that is shared by novel half-pel search hardwares designed for each block size. This half-pel accurate motion estimation hardware is designed to be used as part of a complete H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 85 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 30 HDTV frames (1280x720) per second

    Side information exploitation, quality control and low complexity implementation for distributed video coding

    Get PDF
    Distributed video coding (DVC) is a new video coding methodology that shifts the highly complex motion search components from the encoder to the decoder, such a video coder would have a great advantage in encoding speed and it is still able to achieve similar rate-distortion performance as the conventional coding solutions. Applications include wireless video sensor networks, mobile video cameras and wireless video surveillance, etc. Although many progresses have been made in DVC over the past ten years, there is still a gap in RD performance between conventional video coding solutions and DVC. The latest development of DVC is still far from standardization and practical use. The key problems remain in the areas such as accurate and efficient side information generation and refinement, quality control between Wyner-Ziv frames and key frames, correlation noise modelling and decoder complexity, etc. Under this context, this thesis proposes solutions to improve the state-of-the-art side information refinement schemes, enable consistent quality control over decoded frames during coding process and implement highly efficient DVC codec. This thesis investigates the impact of reference frames on side information generation and reveals that reference frames have the potential to be better side information than the extensively used interpolated frames. Based on this investigation, we also propose a motion range prediction (MRP) method to exploit reference frames and precisely guide the statistical motion learning process. Extensive simulation results show that choosing reference frames as SI performs competitively, and sometimes even better than interpolated frames. Furthermore, the proposed MRP method is shown to significantly reduce the decoding complexity without degrading any RD performance. To minimize the block artifacts and achieve consistent improvement in both subjective and objective quality of side information, we propose a novel side information synthesis framework working on pixel granularity. We synthesize the SI at pixel level to minimize the block artifacts and adaptively change the correlation noise model according to the new SI. Furthermore, we have fully implemented a state-of-the-art DVC decoder with the proposed framework using serial and parallel processing technologies to identify bottlenecks and areas to further reduce the decoding complexity, which is another major challenge for future practical DVC system deployments. The performance is evaluated based on the latest transform domain DVC codec and compared with different standard codecs. Extensive experimental results show substantial and consistent rate-distortion gains over standard video codecs and significant speedup over serial implementation. In order to bring the state-of-the-art DVC one step closer to practical use, we address the problem of distortion variation introduced by typical rate control algorithms, especially in a variable bit rate environment. Simulation results show that the proposed quality control algorithm is capable to meet user defined target distortion and maintain a rather small variation for sequence with slow motion and performs similar to fixed quantization for fast motion sequence at the cost of some RD performance. Finally, we propose the first implementation of a distributed video encoder on a Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is efficiently implemented, using rate adaptive low-density-parity-check accumulative (LDPCA) codes, exploiting the hardware features and optimization techniques to improve the overall performance. Implementation results show that the WZ encoder is able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437 DSP running at 700MHz. This results in encoder speed 29 times faster than non-optimized encoder implementation. We also implemented a highly efficient DVC decoder using both serial and parallel technology based on a PC-HPC (high performance cluster) architecture, where the encoder is running in a general purpose PC and the decoder is running in a multicore HPC. The experimental results show that the parallelized decoder can achieve about 10 times speedup under various bit-rates and GOP sizes compared to the serial implementation and significant RD gains with regards to the state-of-the-art DISCOVER codec

    H.264/AVC inter prediction on accelerator-based multi-core systems

    Get PDF
    The AVC video coding standard adopts variable block sizes for inter frame coding to increase compression efficiency, among other new features. As a consequence of this, an AVC encoder has to employ a complex mode decision technique that requires high computational complexity. Several techniques aimed at accelerating the inter prediction process have been proposed in the literature in recent years. Recently, with the emergence of many-core processors or accelerators, a new way of supporting inter frame prediction has presented itself. In this paper, we present a step forward in the implementation of an AVC inter prediction algorithm in a graphics processing unit, using Compute Unified Device Architecture. The results show a negligible drop in rate distortion with a time reduction, on average, of over 98.8 % compared with full search and fast full search, and of over 80 % compared with UMHexagonS search

    A toolset for the analysis and optimization of motion estimation algorithms and processors

    Get PDF

    Low complexity hardware oriented H.264/AVC motion estimation algorithm and related low power and low cost architecture design

    Get PDF
    制度:新 ; 報告番号:甲2999号 ; 学位の種類:博士(工学) ; 授与年月日:2010/3/15 ; 早大学位記番号:新525
    corecore