6 research outputs found

    The Glory of the Past and Geometrical Concurrency

    Get PDF
    This paper contributes to the general understanding of the geometrical model of concurrency that was named higher dimensional automata (HDAs) by Pratt. In particular we investigate modal logics for such models and their expressive power in terms of the bisimulation that can be captured. The geometric model of concurrency is interesting from two main reasons: its generality and expressiveness, and the natural way in which autoconcurrency and action refinement are captured. Logics for this model, though, are not well investigated, where a simple, yet adequate, modal logic over HDAs was only recently introduced. As this modal logic, with two existential modalities, during and after, captures only split bisimulation, which is rather low in the spectrum of van Glabbeek and Vaandrager, the immediate question was what small extension of this logic could capture the more fine-grained hereditary history preserving bisimulation (hh)? In response, the work in this paper provides several insights. One is the fact that the geometrical aspect of HDAs makes it possible to use for capturing the hh-bisimulation, a standard modal logic that does not employ event variables, opposed to the two logics (over less expressive models) that we compare with. The logic that we investigate here uses standard past modalities and extends the previously introduced logic (called HDML) that had only forward, action-labelled, modalities. Besides, we try to understand better the above issues by introducing a related model that we call ST-configuration structures, which extend the configuration structures of van Glabbeek and Plotkin. We relate this model to HDAs, and redefine and prove the earlier results in the light of this new model. These offer a different view on why the past modalities and geometrical concurrency capture the hereditary history preserving bisimulation. Additional correlating insights are also gained.Comment: 17 pages, 7 figure

    Reversible Barbed Congruence on Configuration Structures

    Get PDF
    A standard contextual equivalence for process algebras is strong barbed congruence. Configuration structures are a denotational semantics for processes in which one can define equivalences that are more discriminating, i.e. that distinguish the denotation of terms equated by barbed congruence. Hereditary history preserving bisimulation (HHPB) is such a relation. We define a strong back and forth barbed congruence using a reversible process algebra and show that the relation induced by the back and forth congruence is equivalent to HHPB, providing a contextual characterization of HHPB.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Reversibility and asymmetric conflict in event structures

    Get PDF
    Reversible computation has attracted increasing interest in recent years, with applications in hardware, software and biochemistry. We introduce reversible forms of prime event structures and asymmetric event structures. In order to control the manner in which events are reversed, we use asymmetric conflict on events. We prove a number of results about reachable configurations; for instance, we show under what conditions reachable configurations which are finite are reachable by purely finite means. We discuss, with examples, reversing in causal order, where an event is only reversed once all events it caused have been reversed, as well as forms of non-causal reversing
    corecore