2 research outputs found

    A New Gridding Technique for High Density Microarray Images Using Intensity Projection Profile of Best Sub Image

    Get PDF
    As the technologies for the fabrication of high quality microarray advances rapidly, quantification of microarray data becomes a major task. Gridding is the first step in the analysis of microarray images for locating the subarrays and individual spots within each subarray. For accurate gridding of high-density microarray images, in the presence of contamination and background noise, precise calculation of parameters is essential. This paper presents an accurate fully automatic gridding method for locating suarrays and individual spots using the intensity projection profile of the most suitable subimage. The method is capable of processing the image without any user intervention and does not demand any input parameters as many other commercial and academic packages. According to results obtained, the accuracy of our algorithm is between 95-100% for microarray images with coefficient of variation less than two.  Experimental results show that the method is capable of gridding microarray images with irregular spots, varying surface intensity distribution and with more than 50% contamination. Keywords: microarray, gridding, image processing, gridding accurac

    A fully automatic gridding method for cDNA microarray images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Processing cDNA microarray images is a crucial step in gene expression analysis, since any errors in early stages affect subsequent steps, leading to possibly erroneous biological conclusions. When processing the underlying images, accurately separating the sub-grids and spots is extremely important for subsequent steps that include segmentation, quantification, normalization and clustering.</p> <p>Results</p> <p>We propose a parameterless and fully automatic approach that first detects the sub-grids given the entire microarray image, and then detects the locations of the spots in each sub-grid. The approach, first, detects and corrects rotations in the images by applying an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm used to find the positions of the sub-grids in the image and the positions of the spots in each sub-grid. Additionally, a new validity index is proposed in order to find the correct number of sub-grids in the image, and the correct number of spots in each sub-grid. Moreover, a refinement procedure is used to correct possible misalignments and increase the accuracy of the method.</p> <p>Conclusions</p> <p>Extensive experiments on real-life microarray images and a comparison to other methods show that the proposed method performs these tasks fully automatically and with a very high degree of accuracy. Moreover, unlike previous methods, the proposed approach can be used in various type of microarray images with different resolutions and spot sizes and does not need any parameter to be adjusted.</p
    corecore