67,567 research outputs found

    Evaluation and extracting factual software architecture of distributed system by process mining techniques

    Get PDF
    The factual software architectures that are actually implemented of distributed systems do not conform the planned software architectures (Beck 2010). It happens due to the complexity of distributed systems. This problem begets two main challenges; First, how to extract the factual software architectures with the proper techniques and second, how to compare the planned software architecture with the extracted factual architecture. This study aims to use process mining to discover factual software architecture from codes and represents software architecture model in Petri Net to evaluate model by the linear temporal logic and process mining. In this paper, the applicability of process mining techniques, implemented in the ProM6.7 framework is shown to extract and evaluate factual software architectures. Furthermore, capabilities of Hierarchical Colored Petri Net implemented in CPN4.0 are exploited to model and simulate software architectures. The proposed approach has been conducted on a case study to indicate applicability of the approach in the distributed data base system. The final result of the case study indicates process mining is able to extract factual software architectures and also to check its conformance

    Toward autonomic distributed data mining using intelligent web services.

    Get PDF
    This study defines a new approach for building a Web Services based infrastructure for distributed data mining applications. The proposed architecture provides a roadmap for autonomic functionality of the infrastructure hiding the complexity of implementation details and enabling the user with a new level of usability in data mining process. Web Services based infrastructure delivers all required data mining activities in a utility-like fashion enabling heterogeneous components to be incorporated in a unified manner. Moreover, this structure allows the implementation of data mining algorithms for processing data on more than one source in a distributed manner. The purpose of this study is to present a simple, but efficient methodology for determining when data distributed at several sites can be centralized and analyzed as data from the same theoretical distribution. This analysis also answers when and how the semantics of the sites is influenced by distribution in data. This hierarchical framework with advanced and core Web Services improves the current data mining capability significantly in terms of performance, scalability, efficiency, transparency of resources, and incremental extensibility

    Self-Organizing Information Fusion and Hierarchical Knowledge Discovery: A New Framework Using Artmap Neural Networks

    Full text link
    Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016, NMA 501-03-1-2030); National Science Foundation (SBE-0354378, DGE-0221680); Office of Naval Research (N00014-01-1-0624); Department of Homeland Securit

    Information Fusion and Hierarchical Knowledge Discovery by ARTMAP Neural Networks

    Full text link
    Mapping novel terrain from sparse, complex data often requires the resolution of conflicting information from sensors working at different times, locations, and scales, and from experts with different goals and situations. Information fusion methods help resolve inconsistencies in order to distinguish correct from incorrect answers, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods developed here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an objects class is car, vehicle, or man-made. Underlying relationships among objects are assumed to be unknown to the automated system of the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchial knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Office of Naval Research (N00014-01-1-0624
    • …
    corecore