15,424 research outputs found

    A study of hierarchical and flat classification of proteins

    Get PDF
    Automatic classification of proteins using machine learning is an important problem that has received significant attention in the literature. One feature of this problem is that expert-defined hierarchies of protein classes exist and can potentially be exploited to improve classification performance. In this article we investigate empirically whether this is the case for two such hierarchies. We compare multi-class classification techniques that exploit the information in those class hierarchies and those that do not, using logistic regression, decision trees, bagged decision trees, and support vector machines as the underlying base learners. In particular, we compare hierarchical and flat variants of ensembles of nested dichotomies. The latter have been shown to deliver strong classification performance in multi-class settings. We present experimental results for synthetic, fold recognition, enzyme classification, and remote homology detection data. Our results show that exploiting the class hierarchy improves performance on the synthetic data, but not in the case of the protein classification problems. Based on this we recommend that strong flat multi-class methods be used as a baseline to establish the benefit of exploiting class hierarchies in this area

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    A sparse multinomial probit model for classification

    No full text
    A recent development in penalized probit modelling using a hierarchical Bayesian approach has led to a sparse binomial (two-class) probit classifier that can be trained via an EM algorithm. A key advantage of the formulation is that no tuning of hyperparameters relating to the penalty is needed thus simplifying the model selection process. The resulting model demonstrates excellent classification performance and a high degree of sparsity when used as a kernel machine. It is, however, restricted to the binary classification problem and can only be used in the multinomial situation via a one-against-all or one-against-many strategy. To overcome this, we apply the idea to the multinomial probit model. This leads to a direct multi-classification approach and is shown to give a sparse solution with accuracy and sparsity comparable with the current state-of-the-art. Comparative numerical benchmark examples are used to demonstrate the method

    Study and Observation of the Variation of Accuracies of KNN, SVM, LMNN, ENN Algorithms on Eleven Different Datasets from UCI Machine Learning Repository

    Full text link
    Machine learning qualifies computers to assimilate with data, without being solely programmed [1, 2]. Machine learning can be classified as supervised and unsupervised learning. In supervised learning, computers learn an objective that portrays an input to an output hinged on training input-output pairs [3]. Most efficient and widely used supervised learning algorithms are K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Large Margin Nearest Neighbor (LMNN), and Extended Nearest Neighbor (ENN). The main contribution of this paper is to implement these elegant learning algorithms on eleven different datasets from the UCI machine learning repository to observe the variation of accuracies for each of the algorithms on all datasets. Analyzing the accuracy of the algorithms will give us a brief idea about the relationship of the machine learning algorithms and the data dimensionality. All the algorithms are developed in Matlab. Upon such accuracy observation, the comparison can be built among KNN, SVM, LMNN, and ENN regarding their performances on each dataset.Comment: To be published in the 4th IEEE International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT 2018
    corecore