843 research outputs found

    Using Attribute-Based Access Control, Efficient Data Access in the Cloud with Authorized Search

    Get PDF
    The security and privacy issues regarding outsourcing data have risen significantly as cloud computing has grown in demand. Consequently, since data management has been delegated to an untrusted cloud server in the data outsourcing phase, data access control has been identified as a major problem in cloud storage systems. To overcome this problem, in this paper, the access control of cloud storage using an Attribute-Based Access Control (ABAC) approach is utilized. First, the data must be stored in the cloud and security must be strong for the user to access the data. This model takes into consideration some of the attributes of the cloud data stored in the authentication process that the database uses to maintain data around the recorded collections with the user\u27s saved keys. The clusters have registry message permission codes, usernames, and group names, each with its own set of benefits. In advance, the data should be encrypted and transferred to the service provider as it establishes that the data is still secure. But in some cases, the supplier\u27s security measures are disrupting. This result analysis the various parameters such as encryption time, decryption time, key generation time, and also time consumption. In cloud storage, the access control may verify the various existing method such as Ciphertext Policy Attribute-Based Encryption (CP-ABE) and Nth Truncated Ring Units (NTRU). The encryption time is 15% decreased by NTRU and 31% reduced by CP-ABE. The decryption time of the proposed method is 7.64% and 14% reduced by the existing method

    A Framework for Uncertain Cloud Data Security and Recovery Based on Hybrid Multi-User Medical Decision Learning Patterns

    Get PDF
    Machine learning has been supporting real-time cloud based medical computing systems. However, most of the computing servers are independent of data security and recovery scheme in multiple virtual machines due to high computing cost and time. Also, this cloud based medical applications require static security parameters for cloud data security. Cloud based medical applications require multiple servers to store medical records or machine learning patterns for decision making. Due to high Uncertain computational memory and time, these cloud systems require an efficient data security framework to provide strong data access control among the multiple users. In this work, a hybrid cloud data security framework is developed to improve the data security on the large machine learning patterns in real-time cloud computing environment. This work is implemented in two phases’ i.e. data replication phase and multi-user data access security phase. Initially, machine decision patterns are replicated among the multiple servers for Uncertain data recovering phase. In the multi-access cloud data security framework, a hybrid multi-access key based data encryption and decryption model is implemented on the large machine learning medical patterns for data recovery and security process. Experimental results proved that the present two-phase data recovering, and security framework has better computational efficiency than the conventional approaches on large medical decision patterns

    Privacy preserving algorithms for newly emergent computing environments

    Get PDF
    Privacy preserving data usage ensures appropriate usage of data without compromising sensitive information. Data privacy is a primary requirement since customers' data is an asset to any organization and it contains customers' private information. Data seclusion cannot be a solution to keep data private. Data sharing as well as keeping data private is important for different purposes, e.g., company welfare, research, business etc. A broad range of industries where data privacy is mandatory includes healthcare, aviation industry, education system, federal law enforcement, etc.In this thesis dissertation we focus on data privacy schemes in emerging fields of computer science, namely, health informatics, data mining, distributed cloud, biometrics, and mobile payments. Linking and mining medical records across different medical service providers are important to the enhancement of health care quality. Under HIPAA regulation keeping medical records private is important. In real-world health care databases, records may well contain errors. Linking the error-prone data and preserving data privacy at the same time is very difficult. We introduce a privacy preserving Error-Tolerant Linking Algorithm to enable medical records linkage for error-prone medical records. Mining frequent sequential patterns such as, patient path, treatment pattern, etc., across multiple medical sites helps to improve health care quality and research. We propose a privacy preserving sequential pattern mining scheme across multiple medical sites. In a distributed cloud environment resources are provided by users who are geographically distributed over a large area. Since resources are provided by regular users, data privacy and security are main concerns. We propose a privacy preserving data storage mechanism among different users in a distributed cloud. Managing secret key for encryption is difficult in a distributed cloud. To protect secret key in a distributed cloud we propose a multilevel threshold secret sharing mechanism. Biometric authentication ensures user identity by means of user's biometric traits. Any individual's biometrics should be protected since biometrics are unique and can be stolen or misused by an adversary. We present a secure and privacy preserving biometric authentication scheme using watermarking technique. Mobile payments have become popular with the extensive use of mobile devices. Mobile applications for payments needs to be very secure to perform transactions and at the same time needs to be efficient. We design and develop a mobile application for secure mobile payments. To secure mobile payments we focus on user's biometric authentication as well as secure bank transaction. We propose a novel privacy preserving biometric authentication algorithm for secure mobile payments

    Digital certificates and threshold cryptography

    Get PDF
    This dissertation discusses the use of secret sharing cryptographic protocols for distributing and sharing of secret documents, in our case PDF documents. We discuss the advantages and uses of such a system in the context of collaborative environments. Description of the cryptographic protocol involved and the necessary Public Key Infrastructure (PKI) shall be presented. We also provide an implementation of this framework as a “proof of concept” and fundament the use of a certificate extension as the basis for threshold cryptography. Details of the shared secret distribution protocol and shared secret recovery protocol shall be given as well as the associated technical implementation details. The actual secret sharing algorithm implemented at this stage is based on an existing well known secret sharing scheme that uses polynomial interpolation over a finite field. Finally we conclude with a practical assessment of our prototype
    • …
    corecore