
UNIVERSITY OF BEIRA INTERIOR
Department of Computer Science

Digital Certificates and Threshold
Cryptography

Adolfo Barbosa do Amaral Peixinho

Thesis submitted to the Department of Computer Science for the fulfillment of the requirements
for the degree of Master in Science made under the supervision of Doctor Professor Paul
Andrew Crocker, from the Department of Computer Science of University of Beira Interior,

Covilhã - Portugal.

Covilhã, October 19, 2013

“Beware the Four Horsemen of the
Information Apocalypse: terrorists,
drug dealers, kidnappers, and child
pornographers. Seems like you can
scare any public into allowing the
government to do anything with those
four”

Bruce Schneier

“I think that I am among the few lucky
ones who are exploiting complexity.
Most people are unhappy with the
emergence of complexity, they would
prefer it if the world were very simple,
but then it would be a doom for a
cryptographer like myself”

Adi Shamir

“If privacy is outlawed, only outlaws
will have privacy.”

Phill Zimmerman

iii

Acknowledgements

I dedicate a sincere thanks to all who made possible the conclusion of this project.

I would also like to thank Professor Paul Crocker and Professor Simão Sousa for their guidance and
valuable information conveyed, for the precise and clear way of transmitting wisdom and scientific
knowledge, for their availability and above all for their teaching and advice.

I thank my family, in especially my mother, for she always backed me up throughout my life.

Last but not least, I would like to thank Francisca Joana Neves, for the patience and support.

Thank you!

Abstract

This dissertation discusses the use of secret sharing cryptographic protocols for distributing and
sharing of secret documents, in our case PDF documents.

We discuss the advantages and uses of such a system in the context of collaborative environments.

Description of the cryptographic protocol involved and the necessary Public Key Infrastructure
(PKI) shall be presented. We also provide an implementation of this framework as a “proof of
concept” and fundament the use of a certificate extension as the basis for threshold cryptography.

Details of the shared secret distribution protocol and shared secret recovery protocol shall be given
as well as the associated technical implementation details.

The actual secret sharing algorithm implemented at this stage is based on an existing well known
secret sharing scheme that uses polynomial interpolation over a finite field.

Finally we conclude with a practical assessment of our prototype.

Keywords: Secret Sharing, Threshold Cryptography, Public Key Infrastructure, certificate ex-
tension.

Contents

Acknowledgements i

Abstract iii

Contents v

List of Figures ix

List of Tables xi

List of Algorithms xiii

Acronyms xv

Glossary xvii

Notation xix

1 Introduction 1
1.1 Motivation and Objectives . 2
1.2 Contributions . 2
1.3 Thesis Outline . 3

2 State of the Art 5
2.1 Secret Sharing Schemes . 5
2.2 Threshold Secret Sharing Scheme . 5

2.2.1 Shamir’s Secret Sharing Scheme . 5
2.2.2 Blakley Secret Sharing Scheme . 7

2.3 Access Structures . 8
2.4 Overview of Secret Sharing Schemes . 9
2.5 Evolution of Public-Key Infrastructure . 12

2.5.1 Digital Certificate Extensions . 14
2.6 Related Work . 14

3 Requirements and Features 15
3.1 Preliminaries . 15

3.1.1 Object Identifier (OID) . 15
3.1.2 Abstract Syntax Notation One (ASN.1) . 15
3.1.3 One-Way Functions . 17
3.1.4 Pseudo Random Number Generators . 18
3.1.5 Mutual Authentication . 20
3.1.6 SCrypt Password Encryption . 21

3.2 Framework Requirements . 22
3.3 PKI CA Software . 23

3.3.1 EJBCA Features . 23
3.3.2 EJBCA Requirements . 25

3.4 Conclusions . 25

4 Architecture 27
4.1 Communication Model between CA and Web Application 27
4.2 Secret Distribution . 30
4.3 Secret Recovery . 32

5 Implementation 35
5.1 EJBCA Deployment Process . 35

5.1.1 Securing MySQL Relational Database Management System (RDBMS) . . . 35
5.1.2 Securing JBoss Server . 36
5.1.3 EJBCA Installation . 36
5.1.4 CA Hierarchy Implementation . 38

5.2 Web Application Technologies . 41
5.2.1 Securing GlassFish Server . 41
5.2.2 Framework on the Web . 42
5.2.3 Web Application Workflow . 43

6 Security Analysis 53
6.1 Optimization and Obsfuscutation . 53

6.1.1 ProGuard . 53
6.2 SSL-TLS Audit . 54

6.2.1 Qualys SSL-TLS Server Rating Guide . 54
6.2.2 JBoss 5.1 SSL-TLS Audit . 56
6.2.3 Glassfish 3.1.2 SSL-TLS Audit . 58
6.2.4 SSL-TLS Audits on other Organizations . 60
6.2.5 Conclusions . 61

6.3 Attack Trees . 61
6.3.1 Models of Attacks on the Framework . 62

6.4 Conclusions . 65

7 Conclusions and Further Work 67
7.1 Conclusions . 67
7.2 Future Work . 68

A Annexes 69
A.1 EJBCA Configuration Property Files . 69

A.1.1 Certificate Store Configuration . 69
A.1.2 CRL Store Configuration . 69
A.1.3 Database Configuration . 69
A.1.4 EJBCA Configuration . 69
A.1.5 OCSP Configuration . 69
A.1.6 EJBCA Install Configuration . 70
A.1.7 Web Configuration . 70
A.1.8 Certificate Extensions Configuration . 71

A.2 Diagrams . 71
A.2.1 Use Case Diagrams . 72
A.2.2 Sequence Diagrams . 75
A.2.3 Activity Diagrams . 76
A.2.4 Deployment Diagrams . 77

vi

A.2.5 DataBase Entity Relationship Diagram . 78

Bibliography 79

vii

List of Figures

2.1 Blakley Secret Sharing Scheme for threshold k = 2. 7

3.1 OID tree . 16
3.2 Tag, Length, Value triplet element. 16
3.3 Tag, Length, Value triplet of a triplet. 17
3.4 Examples of encoded length and value bytes . 17
3.5 Random and Pseudorandom Number Generators (Sta11) 19
3.6 Client certificate-based mutual authentication sequence. 21

4.1 Communication model between EJBCA-CA and the Web application using the Web
service. 29

4.2 Process that leads to the creation of a secret distribution job. 30
4.3 Process that leads to the creation of a secret recovery job. 32

5.1 Certificate extension illustration. 37
5.2 EJBCA hierarchy diagram . 39
5.3 Web application main window . 43
5.4 Firefox browser warning . 43
5.5 EJBCA public site . 44
5.6 EJBCA certificate enrollment/request form . 44
5.7 Web application login request . 45
5.8 Web application login form . 45
5.9 Web application login success . 46
5.10 Web application group create . 46
5.11 Web application group join . 47
5.12 Web application group leave . 47
5.13 Web application propose PDF . 48
5.14 Web application get PDF file dialog . 48
5.15 Web application secret distribute intent . 49
5.16 Web application secret distribution inititated . 49
5.17 Web application secret recover intent . 50
5.18 Web application secret recover initiated . 50
5.19 Web application show PDF document . 51
5.20 Web application recovered PDF document . 51

6.1 Proguard optimization-obsfuscation process . 53
6.2 JBoss 5.1 SSL-TLS score . 56
6.3 JBoss 5.1 SSL-TLS supported protocols . 56
6.4 JBoss 5.1 SSL-TLS supported protocol details . 57
6.5 JBoss 5.1 SSL-TLS certification path . 57
6.6 Glassfish 3.1.2 SSL-TLS score . 58
6.7 Glassfish 3.1.2 SSL-TLS supported protocols . 58
6.8 Glassfish 3.1.2 SSL-TLS supported protocol details 59
6.9 Glassfish 3.1.2 SSL-TLS certification path . 59
6.10 Caixa Geral de Depósitos SSL-TLS score . 60

6.11 University of Beira Interior SSL-TLS score . 60
6.12 Qualys-SSL Labs SSL-TLS score . 60
6.13 Attack Tree - Open Safe. Adapted from (Sch). 61
6.14 Attack Tree to forge a certificate request . 63
6.15 Attack Tree to steal a certificate . 64

A.1 UML diagrams overview. 71
A.2 Use case diagram of group management system . 72
A.3 Use case diagram of group secrets management system 72
A.4 Use case diagram of the jobs/tasks management system 73
A.5 Use case diagram for access to the private area of the Web application 73
A.6 Use case diagram of the user edit system . 74
A.7 Use case diagram of the certificate request system 74
A.8 Sequence diagram for user login . 75
A.9 Sequence diagram for user register . 75
A.10 Activity diagram of the distribute process . 76
A.11 Activity diagram of the recover process . 76
A.12 Deployment diagram of the framework . 77
A.13 Entity Relationship Diagram of the Web application database 78

x

List of Tables

2.1 Extensions of (k, n) - Threshold Secret Sharing Schemes 9
2.2 Various implementations of Secret Sharing Schemes 11

3.1 Comparison between Certification Authority (CA)-Public Key Infrastructure (PKI)
software . 23

6.1 Letter grade translation from numerical score . 55
6.2 Score percentage of each category . 55

List of Algorithms

1 Secret sharing algorithm . 31
2 Secret recovery algorithm . 33

Acronyms

AIA Authority Information Access

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

CA Certification Authority

CER Canonical Encoding Rules

CMP Certificate Management Protocol

CRL Certificate Revocation List

CSPRNG Cryptographic Secure Pseudo Random Number Generator

CSR Certificate Signing Request

CVE Common Vulnerabilities and Exposures

DER Distinguished Encoding Rules

EJB Enterprise JavaBeans

EJBCA Enterprise Java Beans Certificate Authority

ERD Entity Relationship Diagram

GUI Graphical User Interface

JCE Java Cryptography Extension

JDK Java Development Kit

JEE Java Enterprise Edition

JKS Java KeyStore

JSE Java Standard Edition

JSF Java Server Faces

LDAP Lightweight Directory Access Protocol

OCSP Online Certificate Status Protocol

OID Object Identifier

PEM Privacy-enhanced Electronic Mail

PER Packed Encoding Rules

PKCS Public Key Cryptographic Standard

PBKDF Password-Based Key Derivation Function

PKI Public Key Infrastructure

PRNG Pseudo Random Number Generators

QSSS Quantum Secret Sharing Schemes

RA Registration Authority

RDBMS Relational Database Management System

SSL Secure Socket Layer

SSS Secret Sharing Schemes

SCEP Simple Certificate Enrollment Protocol

TLS Transport Layer Security

TTP Trusted Third Party

UML Unified Modeling Language

VSSS Visual Secret Sharing Schemes

VA Validation Authority

WSDL Web Service Definition Language

xvi

Glossary

Abstract Syntax Notation One (ASN.1) - is a standard and notation that describes rules
and structures for representing, encoding, transmitting, and decoding data in telecommunications
and computer networking.

Authority Information Access (AIA) - is a certificate extension which allows SSL/TLS
clients (mostly web browsers) to go get the missing intermediary certificates, not presented by the
server.

Public Key Infrastructure (PKI) - is a set of hardware, software, people, policies, and
procedures needed to create, manage, distribute, use, store, and revoke digital certificates.

Enterprise Java Beans Certificate Authority (EJBCA) - is an enterprise class PKI Cer-
tificate Authority built on Java Enterprise Edition (JEE) technology.

Certificate Authority (CA) - A CA issues certificates to, and vouches for the authenticity
of entities. The level of trust you can assign to a CA is individual, per CA, and depends on the
CA’s Policy (CP) and CA Practices Statement (CPS).

Registration Authority (RA) - An RA is an administrative function that registers entities
in the PKI. The RA is trusted to identify and authenticate entities according to the CA’s policy.
There can be one or more RA’s connected to each CA in the PKI.

Root CA - A RootCA has a self-signed certificate and is also called Trusted Root. Verification
of other certificates in the PKI ends with the RootCA’s self-signed certificate. Since the RootCA’s
certificate is self-signed it must somehow be configured as a trusted root for all clients in the PKI.

Sub CA - A subordinate CA, or SubCA for short, is a CA whose certificate is signed by another
CA, that can be another SubCA or a RootCA. Since the SubCA’s certificate is signed by another
CA, it does not have to be configured as a trusted root. It is part of a certificate chain that ends
in the RootCA.

Validation Authority (VA) - A VA is responsible for providing information on whether
certificates are valid or not. There can be one or more VA’s connected to each CA in the PKI.

End-Entity - An end-entity is a user, such as an e-mail client, a web server, a web browser or
a VPN-gateway. End-entities are not allowed to issue certificates to other entities, they make up
the leaf nodes in the PKI.

Notation

Sets

X ⊆ Y X is a subset of Y
X ⊂ Y X is a subset of Y and X , Y
P(X) the powerset of X, i.e., the set of all subsets of X
∪ the set union
∩ the set intersection
\ the set difference
X the complement of set X with respect to a given superset
|X| the cardinality of X
∅ the empty set
Z denotes the set of integers
Zp denotes the set of prime numbers
N denotes the set of positive integers (natural numbers)
GFq the Galois field of order q, where q is a prime power

Secret Sharing

n the total number of participants
1, 2, . . . , n the (labels of) participants
A the authorized access structure (A ⊆ P({1, 2, . . . , n}))
Amin the set of the minimal authorized groups
A the unauthorized access structure (the complement of A)
k the threshold (for the case of threshold secret sharing)
S (or S0) the set of secrets
S the secret
Ui the user indexed to index i
ai the share corresponding to the user i
T T P the trusted third party (or dealer)

Chapter 1

Introduction

A fundamental aspect of modern information society is security which has now become more than
ever an asset of great importance in almost every area. Nowadays confidentiality and privacy of
computational frameworks, along with high-level authentication, are considered essential assets of
any system.

The distribution and management of secrets and cryptographic keys has historically always been
a difficult problem. The process is even more complicated when a secret needs to be divided
and shared amongst a group of entities and when group access, authorization and authentication
at a given time is required. For instance in critical systems where all the players may not be
simultaneously available and where an access right must be shared between a group of entities,
redundancy must be built into the system and thus it is often necessary that only a subset of
entities from this group simultaneously authenticate themselves in order to gain the access right
or recover the secret.

The need for protocols which secure the distribution of tasks while protecting the privacy of users
and the reliability of results lead to the development of cryptographic protocols to address these
issues. These are denoted by literature as secure multi-party computation problems (Yao82).
Secure multiparty computation enable entities as a group to compute some function over their
inputs, while at the same time keeping these inputs private.

Our work focuses on two cryptographic systems, the Secret Sharing Schemes and Public Key
Infrastructure.

Secret Sharing Schemes refers to methods for distributing a secret amongst a group of participants,
each of whom is allocated a share (or shadow) of the secret. The recovery of the secret is “lim-
ited” by a threshold on the number of participants recovering the secret. The secret can only be
reconstructed when a sufficient number (above or equal to the threshold) of shares are combined
together.

Public Key Infrastructure reliably verifies the identity of a user via digital signatures, these are the
de facto technique for safeguarding electronic communications and transactions. Just like pass-
ports, diplomas, identity cards, and other traditional certificates, they can specify any kind of data.
Digital certificates are already widely used on the Internet, to authenticate e-mail, web servers,
and software. The most popular web browsers have built-in capabilities for storing, sending, and
verifying digital certificates.
Digital certificates are also playing an increasingly important role in electronic payments (“e-
Commerce”, “e-Banking”), access control (to Web sites, databases, institutions, etc), cloud-computing,
grid-computing, digital copyright protection, electronic voting, and so on.
Around the world, transport organizations, municipalities, health care providers, financial institu-
tions, military departments and other influential organizations are using or are planning to provide
their constituents with digital certificates with the sole means of participating in their systems.
Already, digital certificates may be built into any device or piece of software that must be able
to communicate securely with other devices or with individuals. This includes mobile phones,

watches, televisions, cars, and conceivably even computerized household appliances.

Digital certificates are traditionally associated with a single entity, which can be an individual or
public or private corporation. A certificate used in a Public Key Infrastructure specifies a binding
between the entities name and the entities public key. On the other hand it is often desired that
the power to digitally sign, authenticate and authorize actions and events is shared amongst a
group of actors. A real life example is where a relative of a patient and at least one doctor must
concur in order to authorize possible dangerous medical procedures. A Threshold Crypto-System
is a system where it is necessary that a number bodies larger than a “threshold” value cooperate
during the decryption protocol.

In sensitive and critical environments in order to increase trust in the system and improve confi-
dentiality and for sheer necessity sensitive keys can be broken up and stored at several physical
locations or as, we shall demonstrate in this, thesis on digital certificates.

1.1 Motivation and Objectives

The objectives of this thesis are to explore the possibility of using Secret Sharing Schemes for use
in digital certificates. This thesis will design, develop an implementation of a proof of concept pro-
totype of a cryptographic framework that uses Threshold Cryptography methodologies supported
by Public Key Infrastructure. The support for a Threshold Cryptography Scheme is embedded in
the digital certificate in a form of a custom certificate extension, as a security token.

An objective of the framework technology is that it should also be built on technologies that
support scalability and redundancy for deployment in a cloud environment, as nowadays almost
all business models request, or require, such features in their products/technologies.

A final objective is a security analysis of the architecture and implementation to be developed.

One of the motivations for this thesis was the integration of this work in the project PRICE -
Privacy, Reliability and Integrity in Cloud Environments. In collaboration with PT Inovação in
the context of the Plano de Inovação 2012-2014.

1.2 Contributions

The main contribution of this thesis is an attempt to solve issues, as is referred in the literature,
in multi-party computation problems.

It enables users to perform group based decisions based on previously “agreed” thresholds which
takes into account the privacy and confidentiality of the entities involved. Hence allowing users to
better manage their “trust” in a group, or with other users.

It addresses the key distribution problem as the keys are managed and distributed by the CA and
also deals with hierarchy as its supported by a PKI, which is inherently hierarchical, hence the
different privileges of a user associated with a certificate can be dealt with by the CA.

Also, whilst developing this thesis and studying other collaborative mechanisms to implement
frameworks for Secret Sharing Schemes, other than digital certificates, a framework using smart-

2

cards was developed and this work published in the proceedings of the European Conference on
Information Warfare and Security, 2013 (CP13).

1.3 Thesis Outline

The remaining of this thesis is structured as follows:

• Chapter 2: Presents the state-of-the-art with constructions of Shamir’s Secret Sharing Scheme
and Blakley’s Secret Sharing Scheme. Also there’s an overview on Secret Sharing Schemes
and the evolution of PKI and Digital Certificate Extensions;

• Chapter 3: Introduces some considerations on cryptographic premisses. Outlines require-
ments and features on some of the technologies used to implement our framework;

• Chapter 4: Describes the architecture of our framework;

• Chapter 5: Describes methodologies used to implement our framework;

• Chapter 6: Contains some security analysis of framework and discussions;

• Chapter 7: Discussions, conclusions and future work.

3

Chapter 2

State of the Art

Contents
1.1 Motivation and Objectives . 2

1.2 Contributions . 2

1.3 Thesis Outline . 3

2.1 Secret Sharing Schemes

This chapter introduces some basic notions and theory concerning Secret Sharing Schemes (SSS).
There has been a considerable amount of research on SSS since their seminal, independent, an-
nouncement by Shamir and Blakley (Sha79) (Bla79) in 1979 and this chapter will therefore review
some of this research, the various methodologies, implementations, breakthroughs, etc. We will
focus primarily on Shamir’s constructions as our work will make use of Shamir’s scheme.

A SSS begins with a secret and derives from it certain shares (or shadows) which are distributed
to the participants. This secret may be recovered only by a certain predetermined groups of par-
ticipants. The set of all groups, or “qualified subset”, which can reconstruct the secret is referred
to in the literature as access structure.
The reconstruction of the secret can be made by the participants after they pool together their
shares or by a special party, called combiner, after receiving the shares from the participants of an
authorized group.

Usually, a SSS is coordinated by a dealer who, of course, has to be a mutually trusted party, but
there are also SSS which can be configured without the presence of a dealer (ZLL11).

2.2 Threshold Secret Sharing Scheme

2.2.1 Shamir’s Secret Sharing Scheme

In this section we will demonstrate the construction of the SSS as enunciated by Shamir in (Sha79).
This is the construction we are going to use in our work.

Shamir’s scheme (Sha79) is based on polynomial interpolation and in the fact that: any given k
pairs in a 2-dimensional plane (x1, y1), . . . , (xk, yk) with xi , xj for all 1 ≤ i < j ≤ k, there’s one
and only one polynomial Q(x) of degree k − 1 such that Q(xi) = yi, for all 1 ≤ i ≤ k.

Distribution of Secret Shares

A Trusted third-party T T P (or dealer) distributes shares of a secret S to n users.

1. The T T P sets the secret S as the free coefficient of a random polynomial Q of degree k − 1
over the field of the positive integers modulo a large prime p, where p > n ∧ p > S, and
defines a0 = S;

2. The T T P selects k−1 random, independent coefficients a1, . . . , ak−1, such that 0 ≤ aj ≤ p−1,
defining the random polynomial over Zp, Q(x) =

∑k−1
j=0 ajx

j ;

3. The T T P computes Si = Q(i) mod p, 1 < i ≤ n (or for any distinct points i, 1 ≤ i ≤ p− 1),
and securely transfers the share Si to user Ui, along with public index i.

Recovery of Secret

Any group of k or more users pool their shares. Their shares provide k distinct points (x, y) = (i, Si)
allowing computation of the coefficients aj , 1 ≤ j ≤ k − 1 of Q(x) by Lagrange interpolation (see
equations bellow). The secret is recovered by as f(0) = a0 = S.
The coefficients of an unknown polynomial Q(x) of degree less than k, defined by points (xi, yi),
1 ≤ i ≤ k, are given by the Lagrange interpolation formula:

Q(x) =
k∑

i=1
yi

k∏
j=1,j,i

x− xj

xi − xj
mod(p)

S = Q(0) =
k∑

i=1
yi

k∏
j=1,j,i

−xj

xi − xj
mod(p)

Example of Shamir’s Secret Sharing Scheme

Next we will provide a example of secret distribution/recovery (with artificially small parameters)
for a better understanding of Shamir’s SSS.
Let n = 5 and k = 3. Let us consider polynomial Q(x) = 5x2 + 3x+ 7 over the field Z11.

6

We get following shares of the secret.

Secret = Q(0) = 7

U1 = 5× 12 + 3× 1 + 7 mod 11 = 4

U2 = 5× 22 + 3× 2 + 7 mod 11 = 0

U3 = 5× 32 + 3× 3 + 7 mod 11 = 6

U4 = 5× 42 + 4× 4 + 7 mod 11 = 0

U5 = 5× 52 + 4× 5 + 7 mod 11 = 4

Considering a poll of shares U1,U2 and U5 the secret can be reconstructed as:

4× 2
2− 1 ×

5
5− 1 + 0× 1

1− 2 ×
5

5− 2 + 4× 1
1− 5 ×

2
2− 5 = 7

7 ≡ 7 q.e.d.

2.2.2 Blakley Secret Sharing Scheme

In Blakley’s scheme, as presented in (Bla79), the secret is an element of the vector space GF k
q .

The shares are any n distinct (k − 1)-dimensional hyperplanes that contain the secret, where an
(k − 1)-dimensional hyperplane is a set of form:

(x1, . . . , xk) ∈ GF k
q | α1.x1 + . . .+ αk.xk = β

Where α1, . . . , αk, β are arbitrary elements of the field GFq. The secret can be obtained by
intersecting any k shares.
In figure 2.1 we pictorially describe the case k = 2.

Figure 2.1: Blakley Secret Sharing Scheme for threshold k = 2.

Blakley’s scheme isn’t perfect because any unauthorized group knows that the secret lies in the
intersection of their hyperplanes. Nevertheless, this scheme can be modified to achieve perfect
security by choosing the secret as a single coordinate of a point in GFq k, with the cost of affecting
the information rate.

7

2.3 Access Structures

When discussing SSS it is often useful to consider their properties in relation to sets and information
theory properties.

The elements of the access structure will be referred to as the authorized groups/sets and the rest
are called unauthorized groups/sets.
As Ito, Saito, and Nishizeki have remarked in (ISN87), any access structure A must satisfy the
following natural condition 1.

(∀B ∈ P({1, 2, . . . , n}))((∃A ∈ A)(A ⊆ B)⇒ B ∈ A)

Here P denotes the power set of participants labelled ({1, 2, . . . , n}). This condition basically
states that if a group can recover the secret, so can a larger group. Benaloh and Leichter denoted
such access structures monotone in (BL90). From this we can also derive the property for the
unauthorized access structure A:

(∀B ∈ P({1, 2, . . . , n}))((∃A ∈ A)(B ⊆ A)⇒ B ∈ A)

This means that if a group cannot recover the secret, neither can a smaller group.
Any monotone authorized access structure A is well specified by the set of the minimal authorized
groups, i.e., the set:

Amin = {A ∈ A | (∀B ∈ A \A)(� (B ⊆ A))}

We will use the notation A = cl(Amin) and Amin will be referred to as the basis of A. In general
the closure of some C ⊆ P({1, 2, . . . , n}), denoted by cl(C) is defined as:

cl(C) = {A ∈ P({1, 2, . . . , n})|(∃C ∈ C)(C ⊆ A)}

The unauthorized access structure A is well specified by the set of the maximum authorized groups,
i.e., the set:

Amax = {A ∈ A | (∀B ∈ A \A)(� (A ⊆ B))}

Example 2.1. Let us consider n = 4 and the access structure A = {{1, 2}, {1, 2, 3}, {1, 2, 4},
{1, 2, 3, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}. We obtain thatAmin = {{1, 2}, {3, 4}}, A = {∅, {1}, {2}, {3},
{4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}} and Amax = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}

1There are papers (see, for example, (Beu89) or (BSGV93)) that consider non-monotone access struc-
tures. More precisely, in these schemes, there are positive and negative shares which lead to veto capabil-
ities. As Obana and Kurosawa have remarked in (OK96), this feature is possible only in the case that we
assume that the reconstruction process is trustworthy. The simplest solution for the veto feature is that
the opposing participants posses a special “veto” share in the secret reconstruction phase, leading to an
incorrect secret.

8

Depending on the “quantity” of the secret-information leaked to an unauthorized group, we have
the following categories:

• Perfect Secret Sharing Schemes - The shares of any unauthorized group give no information
(in Information-Theoretic sense) about the secret.

• Computationally Secure Secret Sharing Schemes - Some information about the secret is leaked
to the unauthorized groups, but the problem of finding the secret is intractable 2 3.

Under the scope of Theory of Information we can say, if the length of every share is the same as
the length of the secret then these schemes are ideal (KGH83). Shamir’s SSS is such an example.

2.4 Overview of Secret Sharing Schemes

In the initial stages of work on secret sharing, Blakley (Bla79) and Shamir (Sha79) considered only
schemes with a (k, n) - threshold access structure. Benaloh showed an interactive verifiable (k, n)
- threshold SSS which is zero knowledge (Ben87).
In (BS97), D. R. Stinson and C. Blundo introduced the anonymous threshold scheme. Informally,
in an anonymous SSS, the secret is reconstructed without the knowledge of, which participants
hold which shares. In such schemes the computation of the secret can be carried out by giving the
shares to a “black box” that doesn’t know the identities of the participants holding those shares.
The authors proved a lower bound on the size of the shares for anonymous threshold schemes
and provided optimal schemes for certain classes of threshold structures by using a combinatorial
characterization of optimal schemes. Further results can be found in (CS90).
The original SSS by Shamir (Sha79) and Blakley (Bla79) are (k, n) - threshold SSS. But, there
exist some extensions, which are shown in table 2.1 and summarized as follows.

Extensions of (k, n) - Threshold Secret Sharing Schemes
Threshold Type General Access Structure

Perfect SS Schemes Shamir (Sha79),
Blakley (Bla79)

Ito et al. (ISN87)

Ramp SS Schemes Blakley-Meadows (BM85),
Yamamoto (Yam86)

Kurosawa et al. (KOS+93)

Table 2.1: Extensions of (k, n) - Threshold Secret Sharing Schemes

In the case of (k, n) - threshold access structure, we assume that every share is equally important,
but there are cases we want to make some shares more important than the others, or hierarchize
the shares.
A recommended read on the topic of Ideal Hierarchical Secret Sharing Schemes is (Far10).
One can think in many situations in which, some participants should be more powerful than others.
A first realization to overcome this limitation on initial SSS was made by Shamir in his seminal work
(Sha79) by proposing a simple modification of the threshold scheme to be used by organizations.
Namely, every participant receives as its share a certain number of shares from a threshold scheme,
according to its position in the hierarchy.

2A problem is called computationally intractable if there is no polynomial deterministic algorithm for
solving it in a feasible time frame.

3Ramp Schemes, Secret Sharing Schemes based on information dispersal or Secret Sharing Schemes
based on public information are examples of computationally secure schemes. Such schemes can lead to
shorter shares.

9

In this way a scheme for a weighted threshold access structure is obtained. That is, every participant
has a weight (a positive integer) and a set is qualified if and only if its weight sum is at least a
given threshold.
This scheme is not ideal because the shares have in general larger length than the secret.
In order to realize a secure data storage efficiency, we must make a size of each share as small
as possible, and hence, efficient coding methods for SSS with general access structures must be
established. It’s established how to construct efficient (k, n) - threshold in SSS (Sha79).

As an extension of (k, n) - threshold SSS, Ramp SSS were proposed independently by Blakley-
Meadows (BM85) and Yamamoto (Yam86).
A Ramp SSS is a SSS with intermediate properties between qualified sets and forbidden sets. Ramp
SSS (BM85), (Yam86) are threshold SSS denominated (k, L, n) - threshold Ramp SSS.
The (k, L, n) threshold Ramp SSS are designed such that a secret S can be decrypted from arbitrary
k−out−of−n shares but no information of S can be obtained from arbitrary k−L or less shares.
Considering the case of L = 1, (k, L, n) - threshold Ramp SSS L falls back to a (k, n) - threshold
SSS, and hence, Ramp SSS can be considered as an extension of (k, n) - threshold SSS.

Yvo Desmedt coined the term Threshold Cryptography in (Des87). He describes Threshold Cry-
ptography as a society-oriented cryptography.
In Threshold Cryptography, the message receiver is not an ordinary individual, but an entity of an
organization, such as a small group of people or an entire department. These users share respon-
sibilities of the entity to decrypt a message or sign a message, which is a desirable way to prevent
power abuse, as mentioned by Y. Desmedt (DF90).
Also, in Threshold Cryptography each entity owns a public key and the corresponding private key
is shared among a group of, say n, users. Any b, 1 <= b <= n, of these n users can co-decrypt or
co-sign a message without reconstructing the shared private key. On the other hand, any subset
with size less than t, 1 ≤ t ≤ n, users can neither recover the private key or co-sign/co-decrypt a
message on behalf of the entity (Des98).
So far several threshold RSA primitives have been presented in the research community, not only
by Y. Desmedt (DCB94) (DF94) but also by Y.Frankel (FD92), R. Gennaro (GRJK07) and T. Ra-
bin (Rab98) as well as in threshold DSA primitives, by R. Gennaro (GJKR99) and S.K. Langford
(Lan95).

Benaloh describes an homomorphism property that is present in many threshold schemes which
allows of multiple secrets to be combined to form composite shares which are shares os a compo-
sition of the secrets (Ben96) (Ben87).
The application of secret sharing homomorphism includes fault-tolerant verifiable secret-ballot
elections as well as verifiable secret sharing, this is especially useful in the case of e-voting systems.

In the approach on homomorphism used by Feldman (Fel87) the secret is distributed in such a way
as to enable each trustee to, without further interaction, verify that its share is a well-formed and
valid share of the secret.

According to João Mendes (MM11) homomorphic is an adjective that describes a property of an
encryption scheme that has the ability to perform computations on the cipher-text without de-
crypting it first.
In homomorphic threshold crypto-systems a specific algebraic operation is performed on the plain-
text and another (possibly different) algebraic operation is performed on the cipher-text. De-
pending on one’s viewpoint, this can be seen as either a positive or negative attribute of the
crypto-system.

10

Homomorphic encryption schemes are malleable by design. The homomorphic property of various
crypto-systems can be used to create secure voting systems, collision-resistant hash functions, and
private information retrieval schemes.

As mentioned earlier, SSS have amounted extensive research throughout out the years, the following
table 2.2 summarizes several different realizations of SSS from ordinal SSS to Quantum Secret
Sharing Schemes (QSSS).

Various implementations of Secret Sharing Schemes
Based on Designation Secret

Information
Proposed by

Computers Threshold SSS 4 Numbers in finite
fields

Shamir (Sha79),
Blakley (Bla79)

Human
sense

Visual Cryptography

Cerebral Cryptography

Optical Cryptography

Audio Cryptography

Tempo-based audio
Cryptography

Images

3D Images

Light

Sound

Rhythm

Naor-Shamir (NS94)

Desmedt et al.(DHQ98)

Desmedt et al.(YDQ98)

Desmedt et al.(YDQ98)

Chiou-Laih (CL03)

Quantum
Information

Quantum SSS
Quantum SSS

Numbers
Quantum states

Hillery et al. (HBB99)
Cleve et al. (CGL99)

Table 2.2: Various implementations of Secret Sharing Schemes

The audio cryptography (CL03), (YDQ98), the optical cryptography, (YDQ98) and the cerebral
cryptography (YDQ98) are SSS which use human senses in decryption in the same way as Visual
Secret Sharing Schemes (VSSS).
In the audio and optical cryptography (YDQ98), the secret and shares are sounds or lights which
can be considered as waves, and the interference of waves is used in decryption. In other words,
the waves of shares corresponding to a qualified set are mutually strengthened to “listen” to or
“see” the secret, but the waves of shares for the forbidden set are mutually weakened to hide the
secret.
The audio cryptography (YDQ98) is not unconditionally secure, although the tempo-based audio
cryptography proposed in (CL03) can guarantee unconditional security. In the tempo-based audio
cryptography, secret bits are encrypted into rhythms, and security assumptions are similar to
VSSS.

The cerebral cryptography is a SSS based on the so-called stereogram. The stereogram (Jul60) is
an eye-sight illusion that perceives a 3-dimensional image from two 2-dimensional images. However,
the security conditions are not clarified in (DHQ98).

More recently, quantum cryptography has been extensively studied. As in the case of classical
cryptography, quantum cryptography is also designed for secure data transmissions or secure data
storage.
The first quantum cryptography for data transmission is the so-called BB84 protocol proposed by
Bennett-Brassard in 1984 (BB84), which is a key distribution protocol. On the other hand, for
secure data storage, QSSS are proposed in (CGL99), (Got99), (HBB99), (KKI99).

4These are sometimes denominated in nowadays literature as part of Threshold Cryptography or Thresh-
old Crypto-Systems when related to PKI and where initially called as such by Yvo Desmedt in (Des87).

11

Compared with classical cryptography, quantum cryptography has remarkable advantages such
that it can detect an eavesdropper and a dishonest participant by measurements of quantum
states.
The first QSSS (HBB99) is a three-party protocol based on three entangled particles entitled
Greenberger-Horne-Zeilinger (GHZ) state. In this QSSS, the measurement result for one share can
be determined by combining measurement results for the other two shares. Hence, this method in
(HBB99) can be considered as an extension of a QSSS rather than a QSSS. A (k, n) - threshold
QSSS is considered in (KKI99) as an extension of the method in (HBB99).
In QSSS treated in (HBB99), (KKI99), secret information is ordinary bits which are encoded into
quantum states. On the other hand, its proposed in (CGL99), (Got99) to encrypt a secret quantum
state into shares.
Its shown in (CGL99) that (k, n) - threshold QSSS can be realized only in the case that n ≤ 2k−1,
which comes from the requirement of the so-called no-cloning theorem. Furthermore, in the case
that a secret quantum state is a pure-state, it must hold that n = 2k − 1. It is also shown in
(Got99) that QSSS for general access structures can be constructed for any mixed-state secret
quantum states if these access structures satisfy the no-cloning theorem. The coding efficiency of
QSSS is also treated in (Got99), (OTH03).
SSS, VSSS, and QSSS can guarantee unconditional security, but computationally secure SSS are
considered in (Cac95), (Kra93). In the case of computationally secure SSS, the coding rates of
shares are much more efficient than unconditionally secure SSS (Kra93). Furthermore, such SSS can
treat plural secrets dynamically without redistributing new shares to participants secretly (Cac95).

2.5 Evolution of Public-Key Infrastructure

Individuals and organizations often have a legitimate need to verify the identity or other attributes
of the individuals and entities that they communicate or transact with as well as communicate
with these entities in a secure and confidential fashion.

The development of public-key cryptography is one of greatest revolutions in the history of crypto-
graphy. From its earliest beginnings to modern times, virtually all cryptographic systems have been
based on the elementary tools of substitution and permutation, however public-key cryptography
provides a radical departure from previous cryptographic approaches. For one thing, public-key
algorithms are based on mathematical functions rather than on substitution and permutation.
More important, public-key cryptography is asymmetric, involving the use of two separate keys,
in contrast to symmetric encryption, which uses only one key. The use of two keys has profound
consequences in the areas of confidentiality, key distribution, and authentication.

In many applications, symmetric cryptographic techniques are inappropriate: they require a trusted
third party to set up a secret key for any two parties that have not communicated previously, and
cannot offer non-repudiation. Thus, there is a fundamental need for public-key cryptography.
The concept of public-key cryptography evolved from an attempt to attack two of the most difficult
problems associated with symmetric encryption.
The first problem is that of key distribution. The second problem that Diffie and Hellman pondered,
and one that was apparently unrelated to the first, was that of digital signatures.

12

If the use of cryptography was to become widespread, not just in military situations but for com-
mercial and private purposes, then electronic messages and documents would need the equivalent
of signatures used in paper documents. That is, could a method be devised that would stipulate,
to the satisfaction of all parties, that a digital message had been sent by a particular person?

Diffie and Hellman achieved an astounding breakthrough in 1976 (DH76) by coming up with a
method that addressed both problems and was radically different from all previous approaches to
cryptography 5.
Public-key cryptography enables the parties in a system to digitally sign and encrypt their mes-
sages. When two parties that have not communicated before want to establish an authenticated
session, they need merely fetch the public key of the other, there is no need for a trusted third
party to mediate every transaction.

In their seminal paper (DH76) on public-key cryptography, Diffie and Hellman also pointed out
the problem of authenticating that a public key belongs to an entity. They suggested using secure
online repositories with entries that specify name-key bindings. In 1978, Kohnfelder (Koh78)
proposed to avoid this potential bottleneck by having a trusted entity, called the CA 6, vouch for
the binding between a public key and its holder.

A digital certificate is a signed assertion about a public key. More specifically, it is a digital signa-
ture of the CA that binds a public key to some other piece of information. This enables all system
participants to verify the name-key binding of any presented certificate by applying the public key
of the CA.
A public key infrastructure (PKI), is an infrastructure for a distributed environment that centers
around the distribution and management of public keys and digital certificates. It is widely recog-
nized that PKIs are an essential ingredient for secure electronic communications and transactions
in open environments.
The CA can be made responsible not only for certifying public keys and authenticating certificate
applicants, but also for notarizing electronic documents, resolving disputes, and keeping track of
revoked keys.

Some or all of these functions may be managed by separate trusted parties. For instance, the
registration and approval of certificate applicants may be done by a separate Registration Authority
(RA).
In practice, a PKI can have multiple CA’s, so that certificate applicants and verifiers need not
trust a single CA. CA’s can certify the public keys of other CA’s, and in this manner arbitrary CA
structures can be formed. This gives rise to such notions as certificate chains, bridge CA’s, and
cross certification. These techniques enable anyone to be the issuer of their own digital certificates,
and all issuers can coexist in a single PKI.

5Diffie and Hellman first publicly introduced the concepts of public-key cryptography in 1976. Hellman
credits Merkle with independently discovering the concept at that same time, although Merkle did not
publish until 1978 (Mer78). In fact, the first unclassified document describing public-key distribution and
public-key cryptography was a 1974 project proposal by Merkle (http://merkle.com/1974). However, this
is not the true beginning. Admiral Bobby Inman, while director of the National Security Agency (NSA),
claimed that public-key cryptography had been discovered at NSA in the mid-1960s (Sim93). The first
documented introduction of these concepts came in 1970, from the Communications-Electronics Security
Group, Britain’s counterpart to NSA, in a classified report by James Ellis (Ell70). Ellis referred to the
technique as non-secret encryption and describes the discovery in (Ell99)

6In recent years the term Trusted Third Party (TTP) has gained in popularity.

13

The X.509 certificate framework (Uni97) is the best known example of identity certificates. In
1988, the International Telecommunications Union (ITU) started working on X.509. X.509v1 was
designed to certify the public keys of principals that are uniquely named in X.500 (CCI88) (GR97)
(Wah97), an online database listing globally unique names. An entry in an X.500 directory can be
a person, a device, or anything else that can be assigned a “Distinguished Name”.
X.509v2, released in 1993, provided for a more flexible choice of identifiers.

2.5.1 Digital Certificate Extensions

The third version of the X.509 certificate framework, X.509v3, released in June 1997, greatly
improved the flexibility of X.509 certificates, by providing for a generic mechanism to extend
certificates. This previous statement sets the ground for the development of our work, it unfolds
the plausibility of certificate extension to support Threshold Cryptography.

Also, several pilot PKI projects conducted by U.S. federal agencies (including the NSA, the IRS,
the FBI, the U.S. Department of Defense, and the Social Security Administration) as part of
the Federal Public Key Infrastructure (Com98) (FPKI) use X.509v3 certificates, with application-
dependent extensions.

2.6 Related Work

Already, one can find several Web applications, libraries or simple “recreational” applications
of Shamir’s SSS online these normally consist of a desktop or web application where a single
user enters a secret and then the dealer distributes all the shares to the user who is responsible
for there storage and distribution. An example of such software can be found for example at
http://point-at-infinity.org/ssss/. Another related software is Nightingale from RSA Se-
curity which uses secret splitting to secure sensitive data (Bra) by dividing a user’s password (or
other key) into shares for two independent servers, the scheme is used in password authentication.
Another example is Finnegan Lab System, a graphical desktop application designed for a single
user to learn and explore how secret sharing works (Ols04). However there seems to be no prac-
tical implementation of a collaborative mechanism to share secrets between a group of mutually
authenticated users.

14

http://point-at-infinity.org/ssss/

Chapter 3

Requirements and Features

Contents
2.1 Secret Sharing Schemes . 5
2.2 Threshold Secret Sharing Scheme . 5

2.2.1 Shamir’s Secret Sharing Scheme . 5
2.2.2 Blakley Secret Sharing Scheme . 7

2.3 Access Structures . 8
2.4 Overview of Secret Sharing Schemes . 9
2.5 Evolution of Public-Key Infrastructure . 12

2.5.1 Digital Certificate Extensions . 14
2.6 Related Work . 14

In this section we assess and specify the necessary requirements for the implementation of the
framework, as well as some features of the selected PKI CA chosen.
We also denote some preliminary reviews on cryptographic subjects that should be considered.

3.1 Preliminaries

3.1.1 Object Identifier (OID)

An Object Identifier (OID) is an identifier used to name an object (as implied). Structurally, an
OID consists of a node in a hierarchically-assigned namespace, formally defined using the ITU-T’s
ASN.1 standard, X.690. Successive numbers of the nodes, starting at the root of the tree, identify
each node in the tree.
Users set up new nodes by registering them under the node’s registration authority. The root of
the tree contains the following three arcs:

0 : ITU-T

1 : ISO

2 : joint-iso-itu-t

All other arcs branch from these 3, as shown of figure 3.1.

These OIDs are used extensively in computer security. OIDs serve to name almost every object
type in X.509 certificates e.g. Distinguished Names, Certificate Policy Statements, Certificate
extensions, etc.

3.1.2 Abstract Syntax Notation One (ASN.1)

Abstract Syntax Notation One (ASN.1) is a standard and notation that describes rules and struc-
tures for representing, encoding, transmitting, and decoding data in telecommunications and com-

Figure 3.1: OID tree

puter networking. The formal rules enable representation of objects that are independent of
machine-specific encoding techniques. Formal notation makes it possible to automate the task
of validating whether a specific instance of data representation abides by the specifications.
ASN.1 is a joint standard of the International Organization for Standardization (ISO), International
Electrotechnical Commission (IEC), and International Telecommunication Union Telecommunica-
tion Standardization Sector ITU-T, originally defined in 1984 as part of CCITT X.409:1984. ASN.1
moved to its own standard, X.208, in 1988. The revised 1995 version is covered by the X.680 series.
The latest available version is dated 2008, and is backward compatible with the 1995 version.
ASN.1 has sets of rules to precisely specifying how messages must be “encoded” for communication
with other machines. Each set of “encoding rules” has specific characteristics, such as compactness
or decoding speed, which make it best suited for particular environments.

• Basic Encoding Rules (BER)

• Canonical Encoding Rules (CER)

• Distinguished Encoding Rules (DER) 1

• Packed Encoding Rules (PER)

Applying an encoding rule to the data structures described by an abstract syntax provides a
transfer syntax that governs how bytes in a stream are organized when sent between computers.
The transfer syntax used by Distinguished Encoding Rules always follows a Tag, Length, Value
format. The format is usually referred to as a TLV triplet in which each field (T, L, or V) contains
one or more bytes, as shown on figure 3.2.

Figure 3.2: Tag, Length, Value triplet element.

The Tag field specifies the type of the data structure being sent, the Length field specifies the
number of bytes of content being transferred, and the Value field contains the content. Note that
the Value field can be a triplet if it contains a constructed data type as shown by the following
figure 3.3.

1We will focus on this as it was created to satisfy the requirements of the X.509 specification for secure
data transfer.

16

Figure 3.3: Tag, Length, Value triplet of a triplet.

The Length field in a TLV triplet identifies the number of bytes encoded in the Value field. The
Value field contains the content being sent between computers. If the Value field contains fewer
than 128 bytes, the Length field requires only one byte. Bit 7 of the Length field is zero (0) and the
remaining bits identify the number of bytes of content being sent. If the Value field contains more
than 127 bytes, bit 7 of the Length field is one (1) and the remaining bits identify the number of
bytes needed to contain the length. Examples are shown in the following figure 3.4.

Figure 3.4: Examples of encoded length and value bytes

3.1.3 One-Way Functions

One-way functions are functions that are efficiently computable but infeasible to invert (in an
average-case sense). That is, a function f : {0, 1}∗ → {0, 1}∗ is called one-way if there is an
efficient algorithm that on input x outputs f(x), whereas any feasible algorithm that tries to find
a preimage of f(x) under f may succeed only with negligible probability (where the probability is
taken uniformly over the choices of x and the algorithm’s coin tosses).

Associating feasible computations with probabilistic polynomial-time algorithms, we obtain the
following definition (Gol05).
Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two conditions hold:

1. Easy to evaluate: there exists a polynomial-time algorithm A such that
A(x) = f(x) for every x ∈ {0, 1}∗

2. hard to invert: for every probabilistic polynomial-time algorithm A′, every polynomial p,
and all sufficiently large n,

Pr[A′(f(x), 1n) ∈ f−1(f(x))] < 1
p(n)

where the probability is taken uniformly over all the possible x ∈ {0, 1}n

and all possible outcomes of the internal coin tosses of algorithm A′.

17

3.1.4 Pseudo Random Number Generators

An important cryptographic function is cryptographically strong pseudorandom number genera-
tion. Pseudo Random Number Generators (PRNG) are used in a variety of cryptographic and
security applications. These applications give rise to two distinct and not necessarily compatible
requirements for a sequence of random numbers: randomness and unpredictability.

• Randomness: commonly, the concern in the generation of a sequence of allegedly random
numbers has been that the sequence of numbers be random in some well defined statistical
sense. The following two criteria are used to validate that a sequence of numbers is random:

– Uniform distribution: the distribution of bits in the sequence should be uniform. That
is, the frequency of occurrence of ones and zeros should be approximately equal;

– Independence: no one subsequence in the sequence can be inferred from the others; 2.

• Unpredictability: the requirement is not just that the sequence of numbers be statistically
random but that the successive members of the sequence are unpredictable. With “true”
random sequences, each number is statistically independent of other numbers in the sequence
and therefore unpredictable;

– Forward unpredictability: if the seed is unknown, the next output bit in the sequence
should be unpredictable in spite of any knowledge of previous bits in the sequence;

– Backward unpredictability: it should also not be feasible to determine the seed from
knowledge of any generated values. No correlation between a seed and any value gene-
rated from that seed should be evident; each element of the sequence should appear to
be the outcome of an independent random event whose probability is 1/2.

In terms of randomness, the requirement for a PRNG is that the generated bit stream appear
random even though it is deterministic. There is no single test that can determine if a PRNG
generates numbers that have the characteristic of randomness. The best that can be done is to
apply a sequence of tests to the PRNG. If the PRNG exhibits randomness on the basis of multiple
tests, then it can be assumed to satisfy the randomness requirement.

2Although there are well defined tests for determining that a sequence of bits matches a particular
distribution, such as the uniform distribution, there is no such test to “prove” independence. Rather, a
number of tests can be applied to demonstrate if a sequence does not exhibit independence. The general
strategy is to apply a number of such tests until the confidence that independence exists is sufficiently
strong.

18

NIST SP 800-22 (nis) (A Statistical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications) specifies that the tests should seek to establish the following three
characteristics.

• Uniformity: at any point in the generation of a sequence of random or pseudorandom bits,
the occurrence of a zero or one is equally likely, i.e., the probability of each is exactly 1/2.
The expected number of zeros (or ones) is n/2, where n = the sequence length;

• Scalability: any test applicable to a sequence can also be applied to subsequences extracted
at random. If a sequence is random, then any such extracted subsequence should also be
random. Hence, any extracted subsequence should pass any test for randomness;

• Consistency: the behavior of a generator must be consistent across starting values (seeds).
It is inadequate to test a PRNG based on the output from a single seed or an TRNG on the
basis of an output produced from a single physical output.

Figure 3.5 shows two different forms of PRNGs, based on application.

(a) Random bitstream
(b) Pseudorandom

bitstream (c) Pseudorandom value

Figure 3.5: Random and Pseudorandom Number Generators (Sta11)

All passwords used our framework (Server passwords, CA keystore passwords, Database passwords)
are derived from a Cryptographic Secure Pseudo Random Number Generator (CSPRNG) with at
least 20 characters in length, taken from the following set [A-Za-z0-9] plus special characters with
at least 3 digits, an example of such password could be: Uc3tg9oP^83#G42PeDoO*CQL.
Weak passwords are a major issue when deploying a PKI, specially with RSA, as the research of
(LHB+) on the sanity check of public keys collected on the web demonstrates.

19

3.1.5 Mutual Authentication

All authentication features used by the framework use mutual authentication with client certifi-
cates. These include access to the Web application private area, access to CA administration
console, access to the Web application server administration console.
With client authentication, the web server authenticates the client by using the client’s public key
certificate.

Mutual authentication uses HTTP over SSL-TLS (HTTPS), in which the server authenticates the
client using the client’s public key certificate. SSL-TLS technology provides data encryption, server
authentication, message integrity, and optional client authentication for a TCP/IP connection. The
certificate is issued by our own deployed CA, and provides identification for the bearer.

SSL-TLS secures communication by providing message encryption, integrity, and authentication.
The SSL-TLS standard allows the involved components (such as browsers and HTTP servers)
to negotiate which encryption, authentication, and integrity mechanisms to use, this negotiation
can lead to issues (e.g. weak keys, insecure protocols, etc) as shown by the SSL-TLS installation
assessment in 6.2.1.

• Encryption provides confidentiality by allowing only the intended recipient to read the mes-
sage. SSL can use different encryption algorithms to encrypt messages. During the SSL
handshake that occurs at the start of each SSL session, the client and the server negotiate
which algorithm to use;

• Integrity ensures that a message sent by a client is received intact by the server, untampered.
To ensure message integrity, the client hashes the message into a digest using a hash function
and sends this message digest to the server. The server also hashes the message into a digest
and compares the digests. Because SSL uses hash functions that make it computationally
infeasible to produce the same digest from two different messages, the server can tell that if
the digests do not match, then someone had tampered with the message;

• Authentication enables the server and client to check that the other party is who it claims
to be. When a client initiates an SSL session, the server typically sends its certificate to the
client. The client verifies that the server is authentic and not an impostor by validating the
certificate chain in the server certificate. The server certificate is guaranteed by the certificate
authority (CA) who signed the server certificate. The server also requires the client to have
a certificate to authenticate the identity of the client.

When using certificate-based mutual authentication, the following actions occur:

1. A client requests access to a protected resource.

2. The web server presents its certificate to the client.

3. The client verifies the server’s certificate.

4. If successful, the client sends its certificate to the server.

5. The server verifies the client’s credentials.

6. If successful, the server grants access to the protected resource requested by the client.

20

Figure 3.6 illustrates the sequence of certificate-based mutual authentication.

Figure 3.6: Client certificate-based mutual authentication sequence.

3.1.6 SCrypt Password Encryption

Along with mutual authentication and additional authentication step is required to access the
private area of the framework, as modeled in the UML sequence diagram for login A.8. A password
is created at the registration step, also modeled in the UML sequence diagram for registration A.8,
this password is derived from the clients certificate keystore password.
We choose to have this additional authentication step since operating systems and browsers have
their “unique” ways of dealing with client certificates. All operating systems and browsers ask
for the client certificate upon import, but one can disable, enable or even force the certificate
management software of several operating systems to ask for the certificate password whenever the
certificate is used.
In our model we always wish to validate the user that is using the certificate so an additional layer
of authentication is needed.
On registration the user needs to input their keystore certificate password, upon validation the
inserted password is encrypted with SCrypt encryption algorithm and stored in the Web application
database.
In our framework we also enforce some requirements to users chosen inputs for password, as shown
by the research of (LHB+) on the sanity check of public keys collected on the web these issues
shouldn’t be neglected.
An user input password needs at least to be 8 characters in length, with at least one upper case
character, one digit and one special character.
The Scrypt encryption algorithm is a Password-Based Key Derivation Function (PBKDF) created
by Colin Percival (Per09). The algorithm was specifically designed to make it costly to perform
large scale custom hardware attacks by requiring large amounts of memory.

21

We will not formally illustrate the construction of the algorithm, this can be found at (Per09). A
cost comparison of hardware to crack a password in 1 year, between several encryption and hash
algorithms is also available in (Per09).

The Scrypt encryption algorithm takes 4 parameters:

• Password - is a parameter input in plain text;

• N - is the CPU cost parameter (default is 214 = 16384 we use 216 = 65536);

• r - is the memory cost parameter (default is 8, we use 10);

• p - is the parallelization parameter (default is 1, we use 4).

3.2 Framework Requirements

These are the main requirements to the development of the framework:

• a CA that implements a PKI according to standards such as X.509 and IETF-PKIX and
supports custom certificate extensions;

• a Web Application, accessible by Web browser, that enables end-users the “use” of Secret
Sharing through their digital certificates, using the certificate extension as a security-token;

• the security-token supports integrity checks;

• access to the CA and the Web application must use “strong encryption” providing confiden-
tiality and privacy;

• the framework should support implementation on a distributed orientated platform in a cloud
and grid computing scenario.

The first requirement opens the discussion on which CA software should be considered.
A CA is the essential component of a PKI and its primary function is the management of digital
certificates, to issue and revoke certificates. These may be issued for different goals like: validate
users and devices, secure communication with Secure Socket Layer (SSL)-Transport Layer Security
(TLS) for clients and servers, signature and email encryption, signing documents, access to systems
by using cryptographic cards, secure VPN connections and many more.

22

Two choices emerged from a preliminary analysis, EJBCA (ejba) and OpenCA(ope), table 3.1
shows a comparison between EJBCA and OpenCA considering different parameters (Vat11).
OpenCA is based on many Open-Source Projects, among these there are OpenLDAP, OpenSSL
and Apache Project.
Enterprise Java Beans Certificate Authority (EJBCA) is supported by a Swedish company PrimeKey
Solutions AB R©, which holds the copyright to most of the codebase.

CA-PKI Software
OpenCA EJBCA

Supported O.S. Linux Flavors Platform Independent
Implementation C,Javascript,Perl,Unix Shell Java
Modules Perl Enterprise JavaBeans (EJB)
LDAP 3 Yes Yes
CRL 4 Yes Yes
OCSP 5 Yes Yes
Algorithm Can be chosen Can be chosen
Scalability Support Not really Yes
Configuration Complex Even more complex
License BSD-3 LGPL
Cost Free Free

Table 3.1: Comparison between CA-PKI software

Analyzing the previous table 3.1 we can verify that OpenCA software doesn’t support scalability,
being that one of the requirements states that the framework should support a cloud and grid
computing scenario, the choice of CA software falls on EJBCA.

We will not go in further technical detail why this was the choice of CA-PKI, but simply state that
its used by inumerous high profile organizations such as: National Swedish Police Board; France
Ministry of Defense; Multicert e-Citizen card, Portugal; and many more. EJBCA supports the
technologies needed to implement our framework, such as X.509 certificate extensions and can be
deployed in a clustered, scalable environment.

3.3 PKI CA Software

3.3.1 EJBCA Features

These are some of the features presented by EJBCA. We will not enumerate all of the features
presented by EJBCA but only state the ones that are most relevant to this work.

EJBCA PKI System Features

• Multiple CA’s and levels of CA’s, build a complete infrastructure (or several) within one
instance of EJBCA;

• Follows X.509 and PKIX (RFC-5280);

• Issue SSL/TLS certificates that work with most common servers;

3Lightweight Directory Access Protocol (LDAP)
4Certificate Revocation List (CRL)
5Online Certificate Status Protocol (OCSP)

23

• Server and Client certificates can be exported as Public Key Cryptographic Standard (PKCS)#12,
Java KeyStore (JKS) or Privacy-enhanced Electronic Mail (PEM);

• Browser enrollment;

• Revocation and CRL’s;

• CRL creation and URL-based CRL distribution points according to RFC-5280;

• Configurable certificate profiles for different types and contents of certificates;

• Standard and custom certificate extensions supported;

• Supports Simple Certificate Enrollment Protocol (SCEP);

• Supports OCSP including Authority Information Access (AIA) extensions (RFC-2560 and
RFC-5019);

• Supports RFC-4387 for distribution of CA certificates and CRL’s over HTTP;

• Validation Authority service serving OCSP responses (RFC-2560/5019), CA certificates and
CRL’s (RFC-4387);

• Supports Certificate Management Protocol (CMP) (RFC4210 and RFC4211);

EJBCA Integration Features

• External Validation Authority (VA) and OCSP responder can run integrated with EJBCA
or stand-alone (clustered), for high-performance and high-availability;

• Web service interface for remote administration and integration;

• Application Programming Interface (API) for an external RA, restricting in-bound traffic to
CA;

EJBCA Administration Features

• Configurable entity profiles for different types of users;

• Random or manual password for initial user authentication;

• Multiple levels of administrators with specified privileges and roles;

• Store Certificates and CRL’s in SQL database, LDAP and/or other custom data source;

• Component based architecture for various authorization methods of entities when issuing
certificates;

• Simple stand-alone batch enrollment Graphical User Interface (GUI) for Certificate Signing
Request (CSR)’s (Web Service RA);

24

3.3.2 EJBCA Requirements

The requirements needed to build and run EJBCA are:

• Java Development Kit (JDK)1.6 OpenJDK or Oracle R© JDK, OpenJDK is recommended;

• Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files (for Oracle’s R©

JDK , not required for OpenJDK); 6

• Java Applicational Server, JBoss 5.1.0 is the recommended Server; 7

• Apache Ant 1.7.1 or later. 8

3.4 Conclusions

Stated in the features of the CA PKI chosen for development of our framework we denote EJBCA
follows RFC-5280 which is part of the X.509v3 specification, and states in section 4.2 the follow-
ing: “The extensions defined for X.509 v3 certificates provide methods for associating additional
attributes with users or public keys and for managing relationships between CAs. The X.509 v3
certificate format also allows communities to define private extensions to carry information unique
to those communities.”

The previous statements consolidates the premise that it is plausible to define/build a custom
certificate extension to carry unique information.

6EJBCA makes use of strong cryptography and Keystore passwords must be longer than 7 characters.
For this to work you must install the Unlimited Strength Jurisdiction Policy Files for JDK.

7Other Java Applicational Servers are currently supported as Glassfish 2.1.1 and WebLogic 10.3.4, but
your mileage may vary.

8Javascript support may be needed in Ant for some components.

25

Chapter 4

Architecture

Contents
3.1 Preliminaries . 15

3.1.1 Object Identifier (OID) . 15

3.1.2 Abstract Syntax Notation One (ASN.1) . 15

3.1.3 One-Way Functions . 17

3.1.4 Pseudo Random Number Generators . 18

3.1.5 Mutual Authentication . 20

3.1.6 SCrypt Password Encryption . 21

3.2 Framework Requirements . 22

3.3 PKI CA Software . 23

3.3.1 EJBCA Features . 23

3.3.2 EJBCA Requirements . 25

3.4 Conclusions . 25

In this chapter we show the architectural model of our framework. As well as the developed
distribution/recover algorithms that support our “proof of concept” framework.

4.1 Communication Model between CA and Web Application

As stated previously EJBCA supports a Web service interface for remote administration and
integration. It also supplies a fully working RA sample program, written in Java Standard Edition
(JSE) that uses EJBCA Web Service (ejbb) for communication with the EJBCA applicational
server. It includes most of the operations needed to manage certificates, depending of the privileges
of the RA.
This program will serve as the basis for the development of an JSE application which will provide
the following operations:1

• user edit;

• distribution of secrets;

• recovery of secrets;

All of the previous operations implicitly issue new certificates to end-users. So, all values updated
by the job/task done by the Web service will be reflected in the new issued certificate.

Our communication model approach uses the database, with a table in which certain fields are
used for synchronization between the Web application and the Web service RA application.

As shown in the Entity Relationship Diagram (ERD) A.13 of the database there’s a table named
s_job this is the table used to synchronize events between both applications.

1All operations implicitly issue new certificates to end-users.

Following are the main fields used by both applications and their purpose.

• Field group_name is to find users belonging to the a certain group (used in distribution/recovery
jobs);

• Field user is to find a corresponding user (only used in edit jobs);

• Field job_status is for error handling, web service status and job status, it uses 8 enumerated
values;

1. QUEUE;

2. BUSY;

3. DONE;

4. EJBCA_WS_DOWN;

5. EJBCA_WS_UP;

6. ERROR_USER_EDIT;

7. ERROR_DIST;

8. ERROR_REC;

• Field job_description is used to define what type of job to execute, it has 3 enumerated
values;

1. EDIT;

2. DISTRIBUTE;

3. RECOVER;

• Field job_data contains the data, in binary form, to be encrypted (only used in distribution
jobs);

The Web service RA application periodically checks the table s_job for jobs/tasks, this is accom-
plished by a ScheduledExecutorService.
A ScheduledExecutorService is a Java interface class that extends ExecutorService. “An Execu-
torService can schedule commands to run after a given delay, or to execute periodically” (java).

We instantiate the ScheduledExecutorService with the factory method newScheduledThreadPool
(javb), this method takes as argument an integer that defines the number of threads in the thread-
pool, this value should be parameterized according to the host machine architecture (e.g. in an 8
core machine, 6 threads framework jobs, 2 threads for garbage collecting).

In our Web service RA application we instantiate two ScheduledExecutorServices, one for edit,
distribute and recovery jobs and another for garbage collection of jobs so that the database table
doesn’t fill up with already finished jobs/tasks.

Both ScheduledExecutorService run/execute with a fixed delay. The ScheduledExecutorService for
edit, distribute, recovery jobs/tasks runs every 960ms and the ScheduledExecutorService for garbage
collection runs every 144 960ms (2.4 min. approximately).

28

The following figure 4.1 shows an schematic of the communication model between EJBCA-CA and
the Web application using the EJBCA-RA Web service.

EJBCA CA PKI
Web Application *

Web Service RA

Web App
DB

EJBCA
DB

Periodically
check

for jobs/
tasks

Manage
Certificate

Status

Figure 4.1: Communication model between EJBCA-CA and the Web application using the Web service.

The RA Web service is the entity in charge of the management of secret distribution, secret recovery
and user certificates. This application is the trusted third party in our model.

29

4.2 Secret Distribution

In this section we’ll show the procedures that lead to the secret distribution, as well as the algorithm
implemented for secret sharing.

As Shamir’s SSS works on finite fields, more specifically Zp, we need to clarify the boundaries on
this field, as all other values used by the distribution algorithm are related to these boundaries,
like the secret S that’s going to be distributed and the cardinality of participants |n|.

The most important specification is the size of prime, to form Zp, to use modular arithmetic.
In our work we use a 160 bit p and a 156 bit S.

The process that leads to the creation of a secret distribution job/task in the DB, that will be
posteriorly caught by the RA Web service (T T P) is illustrated in the following figure 4.2.

EJBCA
Web

Application

SSL/TLS Connection

Users authenticate
with their certificate

Users agree on being part
of a group sharing a secret

False

Users agree on the threshold
applied to the group

True

False

Users agree on the document (PDF)
being shared

True

False

Add Job in DB with Enum value of
DISTRIBUTE and document in binary

True

Figure 4.2: Process that leads to the creation of a secret distribution job.

30

When the T T P “picks up” a new secret distribution job for a group the following algorithm 1 is
processed.

Algorithm 1 Secret sharing algorithm
Require: instantiate a CSPRNG, to choose p, polynomial coefficients and S
1: T T P chooses S from Z
2: T T P chooses prime p > n ∧ p > S (n cardinality of users)
3: T T P selects k − 1 random, independent coefficient a1, . . . , ak−1, such that 0 ≤ aj ≤ (p − 1),

defining a random polynomial over Zp, f(x) =
∑k−1

j=0 ajx
j

4: for all 1 ≤ i ≤ n (users that belong to a group of cardinality n) do
5: T T P computes Si = f(i) mod p
6: T T P gets salt from CSPRNG and compute salted Si = salt+ Si

7: T T P hash SHA-256(salted Si)
8: T T P converts salted Si to Hexadecimal
9: T T P updates Web application DB with user index, hashed salted Si (Hex), salt (Hex)

10: if user certificate extension value is null then
11: T T P add values group identifier, Si (plaintext) and hashed salted Si (Hex) to user cer-

tificate extension
12: end if
13: if user certificate extension value not null then
14: T T P concatenates values group identifier, Si (plaintext) and hashed salted Si (Hex) to

user certificate extension
15: end if
16: T T P sets user client certificate status to New, in EJBCA DB, for posterior certificate request
17: end for
18: T T P gets salt from CSPRNG and computes salted S = salt+ S
19: T T P hashes salt and salted S, SHA-256(salt), SHA-256(S)
20: T T P converts salt and salted S to Hexadecimal
21: T T P gets group PDF document in binary, from Web application DB, and encrypts PDF with

AES-256 using S
22: T T P updates Web application DB with group modular arithmetic, salt (Hex), salted S (Hex),

encrypted PDF (in binary)

31

4.3 Secret Recovery

The process that leads to the creation of a secret recovery job/task in the DB, that will be poste-
riorly caught by the RA Web service (T T P) is illustrated in the following figure 4.3.

1 2 3 k

...

y1 = (1,share(1))

Each of the users submit their share to recover
the shared secret

y2 = (2,share(2)) y3 = (3,share(3)) yk = (k,share(k))

Get user share and salted hashed
user share from certificate

extension

False

True (there's a match)

Check salted user share
with value in Web

application DB

Cardinality of users
agreeing on secret recovery

>= Group Threshold

Add Job in DB with
Enum value of RECOVER

Figure 4.3: Process that leads to the creation of a secret recovery job.

When the T T P “picks up” a new secret recovery job for a group the following algorithm 2 is
processed.

32

Algorithm 2 Secret recovery algorithm
1: T T P get group identifier from Web application DB
2: T T P get list of users that belong to previous group and want to recover the group secret (n)
3: if cardinality of users that wish to recover the secret n ≥ k (group threshold from Web

application DB) then
4: T T P gets modular arithmetic value from Web application DB
5: for all 1 ≤ i ≤ n (users that belong to a group of cardinality n) do
6: T T P process Lagrange interpolation
7: T T P get user index from Web application DB
8: T T P get user share from Web application DB
9: end for

10: T T P gets recovered secret (BigInteger)
11: T T P gets salt (Hex) for group secret from Web application DB
12: T T P gets salted S (Hex) for group secret from Web application DB
13: T T P converts salt from Hex to byte array
14: T T P converts recovered secret from Hex to byte array
15: T T P joins arrays salted recovered secret = salt+ recovered secret

16: T T P processes SHA-256(salted recovered secret)
17: T T P gets group secret hash (in Hex) and converts to byte array
18: if integrity check OK (digests of salted recovered secret = group secret hash) then
19: T T P gets encrypted group secret (PDF) (in binary)
20: T T P decrypt encrypted group secret(PDF) with recovered secret
21: T T P set decrypted PDF (in binary) in Web application (value will be cleared when last

user that belongs to group logs-off)
22: end if
23: if integrity check FAILS (digests of salted recovered secret , group secret hash) then
24: T T P marks job/task with error
25: T T P clears unnecessary values
26: end if
27: end if
28: if cardinality of users that wish to recover the secret n < k (group threshold from Web

application DB) then
29: T T P marks job/task with error
30: T T P clears unnecessary values
31: end if

33

Chapter 5

Implementation

Contents
4.1 Communication Model between CA and Web Application 27

4.2 Secret Distribution . 30

4.3 Secret Recovery . 32

In this chapter we go through the steps of EJBCA installation, build of our own CA hierarchy, as
well as define procedures for securing the applicational servers JBoss and Glassfish, as well as the
RDBMS MySQL.
We also denote some Web application technologies considerations.
We will discuss some use cases for the considered cryptographic approaches, PKI with SSS, and
enunciate our own use case.

5.1 EJBCA Deployment Process

5.1.1 Securing MySQL RDBMS

The installation of the RDBMS MySQL is pretty straight forward on major operating systems so
we will not describe it here.
In order to achieve the highest possible level of security, the installation and configuration of
MySQL should be performed in accordance with the following security requirements (mys):

• MySQL databases must be executed in a chrooted environment 1;

• MySQL processes must run under a unique UID/GID that is not used by any other system
process 2;

• MySQL root’s account must be protected by a hard to guess password;

• Only local access to MySQL will be allowed 3;

• The administrator’s account will be renamed 4;

• Anonymous access to the database (by using the nobody account) must be disabled;

• All sample databases and tables must be removed.

Some of these steps to ensure MySQL security can be achieved by running the script
mysql_secure_installation, such steps include: removing test/sample databases, removing

1this wasn’t performed.
2this wasn’t performed, but some O.S. already assure this.
3We limited MySQL to use only local network access by adding the following to MySQL

configuration file: bind-address = 127.0.0.1 and created a rule in the firewall blocking all
non-local traffic.

4this wasn’t performed

anonymous accounts and securing the root user with a chosen password 5.

5.1.2 Securing JBoss Server

These are the recommended steps in securing JBoss when deploying EJBCA (ejba).

• Remove Root.war from deploy folder;

• Remove all files from management folder, in the deploy folder;

• Remove administration console application by removing the admin-console.war file in the
deploy folder;

• Remove JMX console application by removing the jmx-console.war file in the deploy folder;

• Remove the HTTP invoker by removing the http-invoker.sar file in the deploy folder;

Since EJBCA will be the only enterprise application deployed to JBoss removing these management
features won’t be an issue and will improve overall security.

5.1.3 EJBCA Installation

EJBCA installation configuration is done be editing properties files in the conf directory. The
configuration file samples provide plenty of comments describing various options.
Transcripts of all the property files used in our configuration of EJBCA can be found in A.1.
We will deploy EJBCA “vanilla” flavored as we will later discard the the initial CA and build our
own CA hierarchy.
We only did minor changes to the initial “vanilla” configuration files, these changes include:

• enabling the certificate store servlet (default is disabled), in the certstore.properties file;

• enabling the CRL store servlet (default is disabled), in the crlstore.properties file;

• change/configure the RDBMS to MySQL R©, in the database.properties file;

• change CA server DNS hostname, according to our DNS, limit the log maximum query row
count to 100 (default is 1000), change the support languages of the Web GUI EJBCA to only
English and Portuguese (by default 9 languages are supported), in the web.properties file;

• change the OCSP response servlet signature algorithm to to SHA256WithRSA (defaults are
SHA1WithRSA,SHA1WithECDSA;SHA1WithDSA), in the ocsp.properties file;

• change the amount of free memory before alarming to 32 Mb (default is 1 Mb) to EJBCA
Health-check servlet, enable CA tokens to actually perform a signature test (default is false),
change the BCrypt password log rounds to 16 6 (default is 1), in the ejbca.properties file;

• change the signature algorithm of the CA to SHA256WithRSA (default is SHA1WithRSA),
change the validity of the initial CA to 1 day 7 (default is 3650 days, 10 years), in the

5this script is not available on Windows O.S.
6To better protect from off-line brute force attacks of passwords on a compromised database, the

computationally expensive BCrypt algorithm can be configured to use higher log-rounds values that will
increase computational cost. Values can be between 1,...,31. “A decent value for high security is 8”.
According to EJBCA sample file.

7As this certificate is only being used to deploy EJBCA for the first time, so it only has 1 day validity.
We will build our CA hierarchy with other certificates.

36

install.properties file.

Custom Certificate Extension

One important file in our configuration is the property file that specifies the certificate extensions
to be used by EJBCA when issuing certificates.

As stated previously our objective is to provide a CA that embeds a security token in the issued
digital certificates to support Threshold Cryptography, in this case Shamir’s SSS. The previous
custom certificate extension enables this.
The certificate extension has the following requirements:

• an unique specified OID of the extension8;

• full class name (classpath) of the certificate extension implementation class 9;

• specification if the certificate extension should be used or be disabled;

• specification if the display name should be translated in the language resources;

• specification if the extension should be marked as critical in the certificate;

• specification if the extension encoding value and if this value is set dynamically or not 10.

This certificate extension will hold, specifically, 3 values:

• a group identifier;

• user share in plain-text, for this group;

• a salt hashed value of the user share, for this group.

All of these values, also use string terminator symbols, for posterior parsing of the DERUTF8String.
Group identifier uses a terminator string symbol of ’:’ and the user shares use the terminator string
symbol of ’;’.
As our certificate extension can hold several user shares, for several groups, we need a way to know
where a user share ends and another begins.

The following figure 5.1 illustrates an example of such certificate extension.

Group One:7863487643:45c19f802ca8832854e1f3a7a6068d3;

DER UTF8 String

 Group ID User Share Salted Hash of User Share

Figure 5.1: Certificate extension illustration.

8We user OID 2.999, it can be used by anyone, without any permission, for the purpose of documenting
examples of OIDs .

9In the case of EJBCA basic certificate extension this is:
org.ejbca.core.model.ca.certextensions.BasicCertificateExtension.

10In our case we use DERUTF8String.

37

EJBCA Installation Procedure

Before installing we should make sure the right java tools (javac/keytool) are available in your
system PATH (i.e./usr/local/jdk1.6.0_xx/bin) 11.
Due to Java’s memory handling you may need to assign more memory to Ant in order to build
the system without OutOfMemory errors. You can do that by setting an environment variable:
ANT_OPTS=-Xmx512m.
There are also a few bugs that need workaround in order to correctly install EJBCA.

• bug with Bouncy Castle libraries in EJBCA;
workaround - copy EJBCA_HOME/lib/bc*.jar to JBOSS_HOME/server/default/lib/

• on JBoss 5.1.x the Web Service Definition Language (WSDL) location gets incorrectly gene-
rated by default;
workaround - edit the file located at:
APPSRV_HOME/server/default/deployers/jbossws.deployer/META-INF/jboss-beans.xml

and comment the line <property name=“webServiceHost”>$jboss.bind.address</property>

These are the required steps to install EJBCA.

1. open a console (terminal) in the EJBCA directory/folder and type: ant bootstrap.
This will compile and build EJBCA and deploy it to JBoss;

2. open a console (terminal) and start JBoss, with the command run.sh;

3. open a console (terminal) in the EJBCA directory/folder and type: ant install.
This will generate all certificates, keys, etc, needed to run with the initial CA. Administrator
client certificate is found in EJBCA_HOME/p12 this will be imported to the browser for EJBCA
administration;

4. stop JBoss. If JBoss is running from console (terminal) just press Crt+C;

5. open a console (terminal) in the EJBCA directory/folder and type: ant deploy. This
will deploy everything again and configure the servlet container with the keystore file (this
is why we needed to stop the container);

6. import the certificate from EJBCA_HOME/p12/superadmin.p12 in your web browser. This is
the super administrator certificate used to access the administrator GUI;

7. start JBoss again, after this step EJBCA installation is finished. One can now access the
administrator GUI at https://EJBCA_hostname:8443/ejbca/ , or the public web pages at
http://EJBCA_hostname:8080/ejbca.

5.1.4 CA Hierarchy Implementation

After installing EJBCA we will build our own CA hierarchy. Discard the original root CA and
issue new server certificates for EJBCA and client certificates for EJBCA administration. The
following diagram 5.2 illustrates the hierarchy we will build.

11Only JDK 1.6 versions are supported, JDK 7 isn’t supported.

38

Certification Authority (PKI) Web Application

Signing Algorithm: Inherit from issuing CA

RSA key size: 2048, 4096 bits

Validity: 365 days (1 year)

Key usage: Digital Signature, Key

Certificate Sign, CRL Sign

Extended Key usage: OCSP Signer

CRL distribution point: Uses CA defined

CRL dist. point

Authority Information Access: enabled

OCSP: Uses CA defined OCSP locator

Use Custom Certificate Extension:

SSS-Extension

Used by end users to import p12
file in browser for client

authentication

Root CA

Server CA Person CA

Signing Algorithm: SHA256 with RSA

RSA key size: 2048 bits

Validity: 730 days (2 years)

CRL distribution point: active and

defined

OCSP: active with service locator

Root CA Certificate Profile

Uses

Sub CA Certificate Profile
Used by Server CA and Person CA

Server Certificate Profile

All fields are equal to Sub CA Certificate
Profile except:

Key usage: Digital Signature, Key

Certificate Sign

Extended Key usage: Server Authentication

Available CA's: Server CA

Custom Certificate Extension: Doesn't use

Person Certificate Profile

All fields are equal to Sub CA Certificate
Profile except:

Key usage: Digital Signature, Key

Encipherment, No Repudiation

Extended Key usage: Client Authentication,

Email Protection

Available CA's: Person CA

Server End Entity Profile Person End Entity Profile

Email: Required and modifiable
Common Name (CN): Required and
modifiable
RFC 822 Name (e-mail address): Uses
entity email field
2 DNS fields: Required and modifiable
Default token: JKS file
Available tokens: JKS file and PEM file

Email: Required and modifiable
Common Name (CN): Required and
modifiable
RFC 822 Name (e-mail address): Uses
entity email field
Default token: p12 file
Available tokens: p12 file

Used by end users to import JKS
file in servers keystore for server

authentication

Figure 5.2: EJBCA hierarchy diagram

39

These are the steps required to setup the new hierarchy:

1. Issue new super-administrator key and certificate. Create new Super Administrators Group;

(a) In EJBCA administrator Web GUI go to Administation → Add End Entity Page select
Person End Entity Profile. Fill in the required information;

(b) Go to EJBCA Public Web → Create Browser Certificate and provide the credentials
previously specified for the administrator end entity;

(c) Import new super-administrator certificate into the browser;

(d) In EJBCA administrator Web GUI go to Administration → Edit Administrator Privi-
leges click Add, give it a name (Super Administrators)

(e) Provide the required information to specify the new administrator certificate;

2. Prepare new Keystore and Truststore for EJBCA server;

(a) In EJBCA administrator Web GUI go to Administration → Add End Entity Page
select Server End Entity Profile. Fill in the required information. The password
should must match the password specified in the web.properties file A.1.7 for the
httpsserver.password parameter;

(b) Generate the new Keystore, on a console (terminal), with the following commands:
ejbca.sh batch

(c) Generate the new Truststore, on a console (terminal), with the following commands:
ejbca.sh ca getrootcert ’Root CA’ rootca.der -der

ejbca.sh ca getrootcert ’Person CA’ personca.pem

openssl x509 -in personca.pem -out personca.der -outform DER

keytool -importcert -alias rootca -file rootca.der -keystore ←↩
truststore_new.jks

keytool -importcert -alias personca -file personca.der -keystore ←↩
truststore_new.jks

3. Configure CRL updater service. CRL updater service is in charge of generating the CRL’s
and making sure that once they expire they get regenerated. It is executed periodically;

(a) In EJBCA administrator Web GUI go to Administration → Edit Services

(b) Select CA’s to check. Select periodical interval. Activate service.

Before proceeding with deployment of new Keystore and Truststore, make sure to stop the EJBCA.
Deploy the new Keystore and Truststore by copying (or replacing) the files in JBoss directory/folder
keystore.

40

5.2 Web Application Technologies

In regard to the Web technology for the development of the Web application, we’ve chosen JEE
technology, but as stated earlier and considering the communication model between the Web
application and the CA this choice isn’t unique and one could consider other Web application
development technologies, such as: PHP, .NET, Ruby, etc.
For the development of our Web application we used the following technologies:

• GlassFish Server Open Source Edition 3.1.2

• Java Server Faces (JSF) (a Java specification for building component-based user interfaces
for web applications)

• Primefaces (Ajax framework with JSF components)

• Omnifaces (utility library for JSF that focusses on utilities that ease tasks with JSF API)

• Atmosphere Framework (client and server side components for building Asynchronous Web
Application)

• iText is an open source library that allows you to create and manipulate PDF documents 12

We will not specify all of procedures to develop the Web application as this isn’t the focus of this
thesis, but we will mention more relevant procedures regarding security and certificate extension
use.

5.2.1 Securing GlassFish Server

In order to secure Glassfish server we followed the following procedures:

• change the master password. Glassfish uses it to protect the domain-encrypted files from
unauthorized access, i.e. the certificate store which contains the certificates for https com-
munication;

• change administration password, this is password bound to a user (admin), that starts a
domain or has privileges to access the administrator console;

• issue a new server certificate in EJBCA, this step is similar to 2a in CA Hierarchy Imple-
mentation section, but the password must match the previous master password;

• issue a client certificate for server administration in EJBCA, this step is similar to 1b in
CA Hierarchy Implementation section, but the password must match the previous master
password;

• import client certificate certificate chain to previously issued server certificate;

• import client certificate to the browser;

• go to Glassfish administrator console, and activate secure administration. This enforces
administration console to use mutual authentication with the previously deployed certificates.

12Also used by Web service RA

41

5.2.2 Framework on the Web

Our framework is currently located at secret-sharing.tk or www.secret-sharing.tk.

42

secret-sharing.tk
www.secret-sharing.tk

5.2.3 Web Application Workflow

Figure 5.3: Web application main window

Figure 5.4: Firefox browser warning

43

Figure 5.5: EJBCA public site

Figure 5.6: EJBCA certificate enrollment/request form

44

Figure 5.7: Web application login request

Figure 5.8: Web application login form

45

Figure 5.9: Web application login success

Figure 5.10: Web application group create

46

Figure 5.11: Web application group join

Figure 5.12: Web application group leave

47

Figure 5.13: Web application propose PDF

Figure 5.14: Web application get PDF file dialog

48

Figure 5.15: Web application secret distribute intent

Figure 5.16: Web application secret distribution inititated

49

Figure 5.17: Web application secret recover intent

Figure 5.18: Web application secret recover initiated

50

Figure 5.19: Web application show PDF document

Figure 5.20: Web application recovered PDF document

51

Chapter 6

Security Analysis

Contents
5.1 EJBCA Deployment Process . 35

5.1.1 Securing MySQL RDBMS . 35

5.1.2 Securing JBoss Server . 36

5.1.3 EJBCA Installation . 36

5.1.4 CA Hierarchy Implementation . 38

5.2 Web Application Technologies . 41

5.2.1 Securing GlassFish Server . 41

5.2.2 Framework on the Web . 42

5.2.3 Web Application Workflow . 43

6.1 Optimization and Obsfuscutation

The Web Service RA application goes through a process of optimization and obfuscation. These
improve overall Java byte-code performance and difficult the task of reverse-engineering.

6.1.1 ProGuard

ProGuard is a Java class file shrinker, optimizer, obfuscator, and pre-verifier. The shrinking step
detects and removes unused classes, fields, methods, and attributes. The optimization step analyzes
and optimizes the byte-code of the methods. The obfuscation step renames the remaining classes,
fields, and methods using short meaningless names.
These steps make the code base smaller, more efficient, and harder to reverse-engineer.
Each of these steps is optional. For instance, ProGuard can also be used to just list dead code in
an application, or to pre-verify class files for efficient use in Java 6.

Figure 6.1: Proguard optimization-obsfuscation process

ProGuard initially reads the input jars (or wars, ears, zips, or directories). It then subsequently
shrinks, optimizes, obfuscates, and pre-verifies them. ProGuard can optionally perform multiple
optimization passes. ProGuard writes the processed results to one or more output jars (or wars,
ears, zips, or directories). The input may contain resource files, whose names and contents can
optionally be updated to reflect the obfuscated class names.
ProGuard requires the library jars (or wars, ears, zips, or directories) of the input jars to be
specified. These are essentially the libraries that would be needed to compile the code. ProGuard
uses them to reconstruct the class dependencies that are necessary for proper processing. The
library jars themselves always remain unchanged.

6.2 SSL-TLS Audit

In this section we will provide a SSL-TLS assessment of correct installation and functioning.
There are several online tools for security audits of SSL-TLS installation, we used Qualys R© (qua)
SSL labs online service to perform a deep analysis of the configuration of our web servers. We
choose Qualys R© (qua) since its used by several high profile companies such as: HP R©, Microsoft R©,
CISCO R©, eBay R©, Adobe R©, Oracle R©, etc.

6.2.1 Qualys SSL-TLS Server Rating Guide

Methodology Overview

The SSL-TLS server rating approach consists of three steps:

1. First look at a certificate to verify that it is valid and trusted. A server that fails this step
is always assigned a zero score 1.

2. Inspect server configuration in three categories:

a. Protocol support

b. Key exchange support

c. Cipher support

3. Final score (a number between 0 and 100) is a combination of the scores achieved in the
individual categories. A zero score in any category forces the total score to zero.

1Since we have our own CA and use a self-signed root certificate our certificates are not trusted by other
CA’s thus, we get a score of 0. We don’t consider this an issue or a misconfiguration since its expected.

54

Because small differences between configurations are sometimes less important, Qualys R© also assign
letter grades to servers. Letter grades are generally more useful, as its instantly clear that a server
given an A is well configured, opposing to server with a letter F. Table 6.1 shows how a numerical
score is translated into a letter grade.

Letter grade translation
Numerical Score Grade

score ≥ 80 A
score ≥ 65 B
score ≥ 50 C
score ≥ 35 D
score ≥ 20 E
score < 20 F

Table 6.1: Letter grade translation from numerical score

Certificate Inspection

Qualys R© SSL-TLS check considers the following certificates issues with a result of a zero score:

• Domain name mismatch;

• Certificate not yet valid;

• Certificate expired;

• Use of a revoked certificate;

• Use of a self-signed certificate 2;

• Use of a certificate that isn’t trusted (unknown CA or some other validation error) 3;

SSL is a complex hybrid protocol with support for many features across several phases of operation.
To account for the complexity, Qualys R© rate the configuration of an SSL server in three categories,
as displayed in Table 6.2. The final score is a combination of the scores in the individual categories,
as described in the “Methodology Overview” 6.2.1 section.

Criteria categories
Category Score

Protocol support 30%
Key exchange 30%
Cipher strength 40%

Table 6.2: Score percentage of each category

2Our server configuration falls in this category, since we use a self-signed root certificate.
3Our server configuration falls in this category, since we have our own CA and it isn’t trusted by any

other CA.

55

6.2.2 JBoss 5.1 SSL-TLS Audit

Figure 6.2: JBoss 5.1 SSL-TLS score

Figure 6.3: JBoss 5.1 SSL-TLS supported protocols

56

Figure 6.4: JBoss 5.1 SSL-TLS supported protocol details

Figure 6.5: JBoss 5.1 SSL-TLS certification path

57

6.2.3 Glassfish 3.1.2 SSL-TLS Audit

Figure 6.6: Glassfish 3.1.2 SSL-TLS score

Figure 6.7: Glassfish 3.1.2 SSL-TLS supported protocols

58

Figure 6.8: Glassfish 3.1.2 SSL-TLS supported protocol details

Figure 6.9: Glassfish 3.1.2 SSL-TLS certification path

59

6.2.4 SSL-TLS Audits on other Organizations

SSL-TLS Audit on CGD (Portuguese Bank Caixa Geral de Depósitos)

Figure 6.10: Caixa Geral de Depósitos SSL-TLS score

SSL-TLS Audit on UBI (Portuguese University of Beira Interior)

Figure 6.11: University of Beira Interior SSL-TLS score

SSL-TLS Audit on Qualys-SSL Labs (Self-Server Test)

Figure 6.12: Qualys-SSL Labs SSL-TLS score

60

6.2.5 Conclusions

Deductively from the following scores we get to the conclusion that the securest server is from
Qualys R© it self, or that it is the most well configured according to what is known about Common
Vulnerabilities and Exposures (CVE).

UBI (Universidade da Beira Interior) receive the lowest score since they support the, now consid-
ered, insecure protocol SSL 2.0. Hence by Qualys R© risk assessment methodologies they received
a 0 score in protocol support, also Browser Exploit Against SSL/TLS (BEAST) (MS13),(SF13)
isn’t mitigated server side.

We can also conclude that our servers are “almost” as secure as CGD (Caixa Geral de Depósitons),
if Browser Exploit Against SSL/TLS (BEAST) was mitigated server side and forward secrecy 4

protocols where supported, they would probably be.

The previous “recipe” to workaround BEAST had been to enforce RC4 ciphers when TLS 1.0 was
used, this as become flawed (MS13),(SF13) as the “cure” can be worse than the “disease”. The
only “cure” is to advance to more recent protocols TLS 1.1 or TLS.1.2.

Even with the exclusion of weak ciphers from Glassfish and JBoss they will only still support
SSL 3.0 and TLS 1.0. these are architectural limitations that we cannot workaround, these are
“Community Editions” or “Open Source”.

6.3 Attack Trees

Attack trees provide a way to model threats against computer systems in a formal and methodical
way (Sch). The first element to be identified in the model is the goal of the attack. This element is
going to be the root element of the tree. Then, continue to identify the different ways of achieving
that goal. Each different way will be a leaf node of the tree. The Figure 6.13 illustrates an attack
tree that identifies some ways that can be used to open a safe.

Figure 6.13: Attack Tree - Open Safe. Adapted from (Sch).

4All Diffie-Hellman protocol variants present this property.

61

In attack trees it’s also possible to estimate costs if a given goal is achieved, or calculate how
probable it’s to achieve such goal. In order to estimate such values we must attach the each leaf
node of the tree the cost (or probability) of the attack. As we can see in Figure 6.13 the estimated
cheapest cost of attack is $10K.
In the mentioned example it was used cost, but other values could be attached to the nodes as
well. For instance, one may attach to each leaf node of the tree: probabilities, risk categories (low,
moderate, high), possibility (possible, impossible), skills.
An attack tree can be reused, that is, it is possible to use an attack tree as a node of another
one. This is very handy when you have a large system and there are several people analyzing its
security, and when there is an attack that can be used in several attack trees of a system.

6.3.1 Models of Attacks on the Framework

Throughout this section we will present and discuss the attack trees we’ve created during the
security analysis. These attack trees will expose several threats that can be perpetrated to each of
the following goals we identified:

• Forge certificate request;

• Steal Certificate;

• Collect user data.

62

Forge Certificate Request

Forge Certificate
Request

Mislead user to
create a Certificate

Request

Learn user's
credentials
(username
password)

Impersonate a
trustworthy Web

application

Visually monitor the
keyboard

Guess

Monitor computer
memory

Prompt credentials
from the user

Instruct Web
application to issue
a certificate without

user's consent

Impersonate a
trustworthy Web

application

Monitor keyboard
when the user type

his credentials

Figure 6.14: Attack Tree to forge a certificate request

63

Steal Certificate Request

Steal Certificate

Remote access to
user's computer

Physical access to
user's computer

Privilege escalation
of user's computer

Export Certificate
from Keychain

Prompt user for
certificate

Prompt user to send
certificate

Export Certificate
from Browser

Figure 6.15: Attack Tree to steal a certificate

64

6.4 Conclusions

As stated in (Sch): “Security is not a product - it’s a process”. In that sense, the work performed
in the security analysis of the framework is just a first step towards a full comprehension of risks
and vulnerabilities.
The security analysis using attack trees to model goals and threats is far from complete. These
are just initial steps towards a global understanding of the system.

The framework that we developed is destined to be used by web-based systems, thus we must
ensure security in the four fronts: web client, data transport, web server, and operating system.
In that sense, we should not only perform an more detailed audit to the used applications source
code and to its execution, but to the surrounding system.

From such analysis we can then understand how the system security is affected by the different
applications that comprise our framework, and vice-versa, in order to create a higher protection
for users and framework.

65

Chapter 7

Conclusions and Further Work

Contents
6.1 Optimization and Obsfuscutation . 53

6.1.1 ProGuard . 53

6.2 SSL-TLS Audit . 54
6.2.1 Qualys SSL-TLS Server Rating Guide . 54

6.2.2 JBoss 5.1 SSL-TLS Audit . 56

6.2.3 Glassfish 3.1.2 SSL-TLS Audit . 58

6.2.4 SSL-TLS Audits on other Organizations . 60

6.2.5 Conclusions . 61

6.3 Attack Trees . 61
6.3.1 Models of Attacks on the Framework . 62

6.4 Conclusions . 65

7.1 Conclusions

The premise of this thesis was that, it was plausible that a PKI could be build with support for
Threshold Cryptography by embedding a custom certificate extension in the digital certificates.

To achieve this goal, we explored the existing literature, as mentioned in the state of art chapter
2, and concluded that the more suitable approach for our development would be Shamir’s SSS.

Forward, in chapter 3 we consolidated the premise that it is plausible to define/build a custom
certificate extension to carry unique information from RFC-5280 section 4.2.

The 4th chapter, resumes the architectural model of the framework. We start by explaining the
communication process between the CA and Web Application and the importance of being a holis-
tic model.
Here we clarify the secret distribution as well as the secret recovery, presenting the respective
algorithms.

Next we presented procedures for the deployment of our “proof of concept” framework, with all
of its components CA, Web service RA and Web application. Without neglecting the security
procedures.

In the security analysis of our framework. We’ve shown how to perform some optimization and
obsfuscutation processes on the Web service RA application. An SSL security assessment tool that
analyses correct installation as well as some flaws was used and it’s methodologies explained.

We’ve ended our security analysis with attack trees for a formal visualization of attack paths to
our framework.

Overall, it’s plausible to state that the aim of the thesis was achieved. The platform in fact uses
custom certificate extensions in order to support Shamir’s SSS.

7.2 Future Work

Regarding the future work, this Secret Sharing platform has a wide range of possibilities for
improvements.

Threshold Crypto-Systems have an high applicability in a more social world where people are always
connected as Secret Sharing is inherently a group collaborative action as it requires individuals
working together in a coordinated fashion, towards a common goal, namely sharing and recovering
of secrets.

Future work should also consider testing more thoroughly our framework with many concurrent
users.

68

Appendix A

Annexes

Contents
7.1 Conclusions . 67
7.2 Future Work . 68

A.1 EJBCA Configuration Property Files

We will not present the whole file transcripts but only the relevant properties we’ve configured 1.

A.1.1 Certificate Store Configuration

certstore.enabled=true

A.1.2 CRL Store Configuration

crlstore.enabled=true

A.1.3 Database Configuration

database.name=mysql

database.url=jdbc:mysql://127.0.0.1:3306/ejbcadb?characterEncoding=UTF-8

database.username=ejbca-user

database.password=*************************

A.1.4 EJBCA Configuration

ca.keystorepass=:*********************

intresources.secondarylanguage=PT

healthcheck.amountfreemem=32

ejbca.passwordlogrounds=16 2

A.1.5 OCSP Configuration

ocsp.enabled=true

ocsp.signaturealgorithm=SHA256WithRSA;SHA1WithRSA
1All passwords follow the specifications referred on 3.1.4
2To better protect from off-line brute force attacks of passwords on a compromised database, the

computationally expensive BCrypt algorithm can be configured to use higher log-rounds values that will
increase computational cost. Values can be between 1,...,31. “A decent value for high security is 8”.
According to EJBCA sample file.

A.1.6 EJBCA Install Configuration

ca.name=AdminCA1

ca.dn=CN=AdminCA1,O=EJBCA Sample,C=SE

ca.tokentype=soft

ca.tokenpassword=null

ca.keyspec=2048

ca.keytype=RSA

ca.signaturealgorithm=SHA256WithRSA

ca.validity=1 3

ca.policy=null

A.1.7 Web Configuration

java.trustpassword=***********************

superadmin.cn=SuperAdmin

superadmin.dn=CN=$superadmin.cn httpsserver.password=*********************

httpsserver.hostname=www.secret-sharing.tk

httpsserver.dn=CN=$httpsserver.hostname,O=EJBCA Sample,C=SE

web.availablelanguages=EN,PT

log.maxqueryrowcount=100

3As this certificate is only being used to deploy EJBCA for the first time, so it only has 1 day validity.
We will build our CA hierarchy with other certificates.

70

A.1.8 Certificate Extensions Configuration

id1.oid=2.999

id1.classpath=org.ejbca.core.model.ca.certextensions.BasicCertificateExtension

id1.displayname=SSS-EXTENSION

id1.used=true

id1.translatable=false

id1.critical=false

id1.property.encoding=DERUTF8STRING

id1.property.dynamic=true

id1.property.value=null

A.2 Diagrams

In our framework development we use an Unified Modeling Language (UML) modeling approach.
The following figure A.1 highlights the used modeling diagrams.

UML Diagrams

Structure
Diagram

Behaviour
Diagram

Class
Diagram

Use Case
Diagram

Activity
Diagram

Component
Diagram

Object
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

State Machine
Diagram

Interaction
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing
Diagram

Figure A.1: UML diagrams overview.

71

A.2.1 Use Case Diagrams

Figure A.2: Use case diagram of group management system

Figure A.3: Use case diagram of group secrets management system

72

Figure A.4: Use case diagram of the jobs/tasks management system

Figure A.5: Use case diagram for access to the private area of the Web application

73

Figure A.6: Use case diagram of the user edit system

Figure A.7: Use case diagram of the certificate request system

74

A.2.2 Sequence Diagrams

Figure A.8: Sequence diagram for user login

Figure A.9: Sequence diagram for user register

75

A.2.3 Activity Diagrams

Figure A.10: Activity diagram of the distribute process

Figure A.11: Activity diagram of the recover process

76

A.2.4 Deployment Diagrams

Figure A.12: Deployment diagram of the framework

77

A.2.5 DataBase Entity Relationship Diagram

This section denotes the ERD used by the Web application and the Web service Java application.

Figure A.13: Entity Relationship Diagram of the Web application database

78

Bibliography

[BB84] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and
coin tossing. In Proceedings of IEEE International Conference on Computers, Systems,
and Signal Processing, page 175, 1984. 11

[Ben87] J. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret. In
Advances in Cryptology — CRYPTO’ 86, pages 251–260, 1987. 9, 10

[Ben96] J. Benaloh. Veriable Secret-Ballot Elections. PhD thesis, Yale, 1996. 10

[Beu89] Beutelspacher. How to say “no”. In EUROCRYPT: Advances in Cryptology: Proceedings
of EUROCRYPT, 1989. 8

[BL90] J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions, 1990.
8

[Bla79] G.R. Blakley. Safeguarding cryptographic keys. In AFIPS, page 313. IEEE Computer
Society, 1979. 5, 7, 9, 11

[BM85] G. R. Blakley and Catherine Meadows. Security of ramp schemes. In G. R. Blakley
and D. C. Chaum, editors, Proceedings in CRYPTO 84, pages 242–268. Springer, 1985.
Lecture Notes in Computer Science No. 196. 9, 10

[Bra] 14

[BS97] C. Blundo and D.R. Stinson. Anonymous secret sharing schemes. Discrete Applied
Mathematics, (96), 1997. 9

[BSGV93] Blundo, De Santis, Gargano, and Vaccaro. Secret sharing schemes with veto capabilities.
In FIWAC: French-Israeli Workshop on Algebraic Coding, 1993. 8

[Cac95] C. Cachin. On-line secret sharing. Lecture Notes in Computer Science, 1995. 12

[CCI88] CCITT. Recommendation X.500: The directory–overview of concepts, models and
services, 1988. 14

[CGL99] Richard Cleve, Daniel Gottesman, and HK Lo. How to share a quantum secret. Physical
Review Letters, pages 1–5, 1999. 11, 12

[CL03] Chiou and Laih. A tempo-based t-out-of-n audio cryptography scheme. TIEICE: IEICE
Transactions on Communications/Electronics/Information and Systems, 2003. 11

[Com98] Federal Public Key Infrastructure Steering Committee. Access with trust. Government
Information Technology Services Board, Office of Management and Budget, September
1998. 14

[CP13] Paul Andrew Crocker and Adolfo Peixinho. Secret Sharing for High Security Codes
on Smart-Cards. page 45. ECIW - European Conference on Information Warfare and
Security, 2013. 3

[CS90] Chen and Stinson. Recent results on combinatorial constructions for threshold schemes.
AJC: Australasian Journal of Combinatorics, 1, 1990. 9

[DCB94] Yvo Desmedt, Giovanni Di Crescenzo, and Mike Burmester. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography. In ASIACRYPT,
pages 21–32, 1994. 10

[Des87] Yvo Desmedt. Society and Group Oriented Cryptography: A New Concept. Advances
in Cryptology — CRYPTO’ 87, pages 120–127, 1987. 10, 11

[Des98] Yvo Desmedt. Some Recent Research Aspects of Threshold Cryptography. Information
Security, pages 158–173, 1998. 10

[DF90] Yvo Desmedt and Y. Frankel. Threshold cryptosystems. In Science, pages 307–315.
Springer, 1990. 10

[DF94] Yvo Desmedt and Yair Frankel. Perfect homomorphic zero-knowledge threshold schemes
over any finite abelian group. SIAM J. Discrete Math., 7(4):667–679, 1994. 10

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, November 1976. 13

[DHQ98] Yvo Desmedt, Shuang Hou, and Jean-Jacques Quisquater. Cerebral cryptography. In
Information Hiding, pages 62–72, 1998. 11

[ejba] [online]Available from: http://www.ejbca.org [cited 2013]. 23, 36

[ejbb] [online]Available from: http://sourceforge.net/projects/ejbca/files/

WebServiceRA/ [cited 2013]. 27

[Ell70] J.H. Ellis. The possibility of secure non-secret digital encryption. UK Communications
Electronics Security Group, (January), 1970. 13

[Ell99] J.H. Ellis. The history of non-secret encryption. Cryptologia, 1976(April):7–10, 1999.
13

[Far10] Oriol Farras. Ideal hierarchical secret sharing schemes. Theory of cryptography, pages
1–24, 2010. 9

[FD92] Y Frankel and Y Desmedt. Parallel reliable threshold multisignature. Dept. of Elect.
Eng. and Computer Sci., Univ. of . . . , 1992. 10

[Fel87] Paul Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing Paul
Feldman Massachusetts Institute of Technology. pages 427–437, 1987. 10

[GJKR99] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and T. Rabin. Robust Threshold
DSS Signatures. Proceedings of the 15th annual international conference on Theory and
application of cryptographic techniques, pages 1–33, 1999. 10

[Gol05] Oded Goldreich. Foundations of Cryptography – A Primer. now Publishers Inc., 2005.
17

[Got99] Daniel Gottesman. On the theory of quantum secret sharing. Technical report, Microsoft
Research (MSR), 1999. 11, 12

[GR97] David Goodman and Colin Robbins. Understanding LDAP X.500 - Version 2.0. Tech-
nical report, European Electronic Messaging Association, August 1997. 14

80

http://www.ejbca.org
http://sourceforge.net/projects/ejbca/files/WebServiceRA/
http://sourceforge.net/projects/ejbca/files/WebServiceRA/

[GRJK07] Rosario Gennaro, Tal Rabin, Stanislav Jarecki, and Hugo Krawczyk. Robust and Ef-
ficient Sharing of RSA Functions. Journal of Cryptology, 20(3):393–393, July 2007.
10

[HBB99] Mark Hillery, V Bužek, and A Berthiaume. Quantum secret sharing. Physical Review
A, 1999. 11, 12

[ISN87] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access
structure. In Proceedings IEEE Globecom ’87, pages 99–102. IEEE, 1987. 8, 9

[java] [online]Available from: http://docs.oracle.com/javase/6/docs/api/java/util/

concurrent/ScheduledExecutorService.html [cited 2013]. 28

[javb] [online]Available from: http://docs.oracle.com/javase/6/docs/api/java/util/

concurrent/Executors.html [cited 2013]. 28

[Jul60] B. Julesz. Binocular depth perception of computer-generated patterns. Bell System
Tech., 39(5):1125–1161, 1960. 11

[KGH83] Karnin, Greene, and Hellman. On secret sharing systems. IEEETIT: IEEE Transactions
on Information Theory, 29, 1983. 9

[KKI99] Anders Karlsson, Masato Koashi, and Nobuyuki Imoto. Quantum entanglement for
secret sharing and secret splitting. Physics Review A, 59:162–168, Jan 1999. 11, 12

[Koh78] Loren M. Kohnfelder. Towards a practical public-key cryptosystem. 1978. 13

[KOS+93] Kurosawa, Okada, Sakano, Ogata, and Tsujii. Nonperfect secret sharing schemes and
matroids. In EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRYPT,
1993. 9

[Kra93] Krawczyk. Secret sharing made short. In CRYPTO: Proceedings of Crypto, 1993. 12

[Lan95] S. Langford. Threshold DSS signatures without a trusted party. Advances in Cryptology
— CRYPTO’ 95, pages 397–409, 1995. 10

[LHB+] Arjen K Lenstra, James P Hughes, Joppe W Bos, Thorsten Kleinjung, and Christophe
Wachter. Ron was wrong , Whit is right. Observatory, pages 1–16. 19, 21

[Mer78] Ralph C. Merkle. Secure communications over insecure channels. Communications of
the ACM, 21(4):294–299, April 1978. 13

[MM11] João Miguel and Silva Mendes. Trusted Civitas : Client Trust in CIVITAS Electronic
Voting Protocol Engenharia Informática e de Computadores. 2011. 10

[MS13] Christopher Meyer and Jörg Schwenk. Lessons learned from previous SSL/TLS attacks -
A brief chronology of attacks and weaknesses. IACR Cryptology ePrint Archive, page 49,
2013. 61

[mys] [online]Available from: http://www.symantec.com/connect/articles/

securing-mysql-step-step [cited 2013]. 35

[nis] [online]Available from: http://www.nist.gov/ [cited 2013]. 19

[NS94] M Naor and A Shamir. Visual cryptography. Advances in Cryptology—
EUROCRYPT’94, 1994. 11

81

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Executors.html
http://www.symantec.com/connect/articles/securing-mysql-step-step
http://www.symantec.com/connect/articles/securing-mysql-step-step
http://www.nist.gov/

[OK96] Obana and Kurosawa. Veto is impossible in secret sharing schemes. IPL: Information
Processing Letters, 58, 1996. 8

[Ols04] Fredrik Olsson. A lab system for secret sharing, 2004. 14

[ope] [online]Available from: http://www.openca.org [cited 2013]. 23

[OTH03] Iwamoto M. Ogawa T., Sasaki A. and Yamamoto H. Coding efficiency and construction
of quantum secret sharing schemes. Proc. of Symposium on Information Theory and
Its Applications, pages 651–654, 2003. 12

[Per09] Colin Percival. Stronger key derivation via sequential memory-hard functions. BSDCan
2009, pages 1–16, 2009. 21, 22

[qua] [online]Available from: https://www.ssllabs.com/ssltest/ [cited 2013]. 54

[Rab98] Tal Rabin. A Simplified Approach to Threshold and Proactive RSA. pages 89–104,
1998. 10

[Sch] Bruce Schneier. Attack trees - modeling security threats. Available from: https:

//www.schneier.com/paper-attacktrees-ddj-ft.html [cited 2013]. x, 61, 65

[SF13] Pratik Guha Sarkar and Shawn Fitzgerald. Attacks on SSL - A comprehensive study
of BEAST , CRIME , TIME , BREACH , LUCKY 13 RC4 Biases, 2013. 61

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
November 1979. 5, 6, 9, 10, 11

[Sim93] G. J. Simmons. Cryptology. Encyclopaedia Britannica, fifteenth edition edition, 1993.
13

[Sta11] William Stallings. Cryptography and Network Security - Principles and Practice. Pren-
tice Hall, 5th edition, 2011. ix, 19

[Uni97] International Telecommunication Union. ITU-T: X.509 : Information technology - Open
Systems Interconnection Open Systems Interconnection – The directory: Authentica-
tion framework, June 1997. 14

[Vat11] Nicuor Vatra. A pki architecture using opensource software for e-government services
in romania. Engg Journals Publications, 2011. 23

[Wah97] M. Wahl. A summary of the X.500(96) user schema for use with LDAPv3. Network
Working Group - RFC-2256, December 1997. 14

[Yam86] Hirosuke Yamamoto. Secret sharing system using (k, l, n) threshold scheme. Electronics
and Communications in Japan (Part I: Communications), 69(9):46–54, 1986. 9, 10

[Yao82] Andrew C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, pages 160–164. IEEE, 1982. 1

[YDQ98] H. Shuang Y. Desmedt and J-J Quisquater. Audio and optical cryptography. Advances
in Cryptology—ASIACRYPT, 1998. 11

[ZLL11] Qianqian Zhang, Zhihui Li, and Xiong Li. A verifiable secret sharing scheme without
dealer in vector space. In Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth
International Conference on, volume 4, pages 2222–2225. IEEE, 2011. 5

82

http://www.openca.org
https://www.ssllabs.com/ssltest/
https://www.schneier.com/paper-attacktrees-ddj-ft.html
https://www.schneier.com/paper-attacktrees-ddj-ft.html

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Glossary
	Notation
	Introduction
	Motivation and Objectives
	Contributions
	Thesis Outline

	State of the Art
	Secret Sharing Schemes
	Threshold Secret Sharing Scheme
	Shamir's Secret Sharing Scheme
	Blakley Secret Sharing Scheme

	Access Structures
	Overview of Secret Sharing Schemes
	Evolution of Public-Key Infrastructure
	Digital Certificate Extensions

	Related Work

	Requirements and Features
	Preliminaries
	Object Identifier (OID)
	Abstract Syntax Notation One (ASN.1)
	One-Way Functions
	Pseudo Random Number Generators
	Mutual Authentication
	SCrypt Password Encryption

	Framework Requirements
	PKI CA Software
	EJBCA Features
	EJBCA Requirements

	Conclusions

	Architecture
	Communication Model between CA and Web Application
	Secret Distribution
	Secret Recovery

	Implementation
	EJBCA Deployment Process
	Securing MySQL RDBMS
	Securing JBoss Server
	EJBCA Installation
	CA Hierarchy Implementation

	Web Application Technologies
	Securing GlassFish Server
	Framework on the Web
	Web Application Workflow

	Security Analysis
	Optimization and Obsfuscutation
	ProGuard

	SSL-TLS Audit
	Qualys SSL-TLS Server Rating Guide
	JBoss 5.1 SSL-TLS Audit
	Glassfish 3.1.2 SSL-TLS Audit
	SSL-TLS Audits on other Organizations
	Conclusions

	Attack Trees
	Models of Attacks on the Framework

	Conclusions

	Conclusions and Further Work
	Conclusions
	Future Work

	Annexes
	EJBCA Configuration Property Files
	Certificate Store Configuration
	CRL Store Configuration
	Database Configuration
	EJBCA Configuration
	OCSP Configuration
	EJBCA Install Configuration
	Web Configuration
	Certificate Extensions Configuration

	Diagrams
	Use Case Diagrams
	Sequence Diagrams
	Activity Diagrams
	Deployment Diagrams
	DataBase Entity Relationship Diagram

	Bibliography

