3,415 research outputs found

    A Faster Method to Estimate Closeness Centrality Ranking

    Get PDF
    Closeness centrality is one way of measuring how central a node is in the given network. The closeness centrality measure assigns a centrality value to each node based on its accessibility to the whole network. In real life applications, we are mainly interested in ranking nodes based on their centrality values. The classical method to compute the rank of a node first computes the closeness centrality of all nodes and then compares them to get its rank. Its time complexity is O(nβ‹…m+n)O(n \cdot m + n), where nn represents total number of nodes, and mm represents total number of edges in the network. In the present work, we propose a heuristic method to fast estimate the closeness rank of a node in O(Ξ±β‹…m)O(\alpha \cdot m) time complexity, where Ξ±=3\alpha = 3. We also propose an extended improved method using uniform sampling technique. This method better estimates the rank and it has the time complexity O(Ξ±β‹…m)O(\alpha \cdot m), where Ξ±β‰ˆ10βˆ’100\alpha \approx 10-100. This is an excellent improvement over the classical centrality ranking method. The efficiency of the proposed methods is verified on real world scale-free social networks using absolute and weighted error functions

    Fast Shortest Path Distance Estimation in Large Networks

    Full text link
    We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.Yahoo! Research (internship
    • …
    corecore