32,660 research outputs found

    A forensically-enabled IASS cloud computing architecture

    Get PDF
    Current cloud architectures do not support digital forensic investigators, nor comply with today’s digital forensics procedures largely due to the dynamic nature of the cloud. Whilst much research has focused upon identifying the problems that are introduced with a cloud-based system, to date there is a significant lack of research on adapting current digital forensic tools and techniques to a cloud environment. Data acquisition is the first and most important process within digital forensics – to ensure data integrity and admissibility. However, access to data and the control of resources in the cloud is still very much provider-dependent and complicated by the very nature of the multi-tenanted operating environment. Thus, investigators have no option but to rely on cloud providers to acquire evidence, assuming they would be willing or are required to by law. Furthermore, the evidence collected by the Cloud Service Providers (CSPs) is still questionable as there is no way to verify the validity of this evidence and whether evidence has already been lost. This paper proposes a forensic acquisition and analysis model that fundamentally shifts responsibility of the data back to the data owner rather than relying upon a third party. In this manner, organisations are free to undertaken investigations at will requiring no intervention or cooperation from the cloud provider. The model aims to provide a richer and complete set of admissible evidence than what current CSPs are able to provide

    Medical Cyber-Physical Systems Development: A Forensics-Driven Approach

    Full text link
    The synthesis of technology and the medical industry has partly contributed to the increasing interest in Medical Cyber-Physical Systems (MCPS). While these systems provide benefits to patients and professionals, they also introduce new attack vectors for malicious actors (e.g. financially-and/or criminally-motivated actors). A successful breach involving a MCPS can impact patient data and system availability. The complexity and operating requirements of a MCPS complicates digital investigations. Coupling this information with the potentially vast amounts of information that a MCPS produces and/or has access to is generating discussions on, not only, how to compromise these systems but, more importantly, how to investigate these systems. The paper proposes the integration of forensics principles and concepts into the design and development of a MCPS to strengthen an organization's investigative posture. The framework sets the foundation for future research in the refinement of specific solutions for MCPS investigations.Comment: This is the pre-print version of a paper presented at the 2nd International Workshop on Security, Privacy, and Trustworthiness in Medical Cyber-Physical Systems (MedSPT 2017

    Modifications and Improvements to the Sea Beam System on Board R/V Thomas Washington

    Get PDF
    A number of modifications to the narrowbeam echo-sounder and echo processor of the Sea Beammultibeam bathymetric survey system have been implemented. These include the design and construction of a digital pitch compensator, the ability to use a variety of sensors for vertical reference, the design and construction of hardware test equipment, and an interface to the shipboard DEC VAX-11/730 computer for data logging, automation of start-up procedures, and performance monitorin

    Calm before the storm: the challenges of cloud computing in digital forensics

    Get PDF
    Cloud computing is a rapidly evolving information technology (IT) phenomenon. Rather than procure, deploy and manage a physical IT infrastructure to host their software applications, organizations are increasingly deploying their infrastructure into remote, virtualized environments, often hosted and managed by third parties. This development has significant implications for digital forensic investigators, equipment vendors, law enforcement, as well as corporate compliance and audit departments (among others). Much of digital forensic practice assumes careful control and management of IT assets (particularly data storage) during the conduct of an investigation. This paper summarises the key aspects of cloud computing and analyses how established digital forensic procedures will be invalidated in this new environment. Several new research challenges addressing this changing context are also identified and discussed

    A Forensically Sound Adversary Model for Mobile Devices

    Full text link
    In this paper, we propose an adversary model to facilitate forensic investigations of mobile devices (e.g. Android, iOS and Windows smartphones) that can be readily adapted to the latest mobile device technologies. This is essential given the ongoing and rapidly changing nature of mobile device technologies. An integral principle and significant constraint upon forensic practitioners is that of forensic soundness. Our adversary model specifically considers and integrates the constraints of forensic soundness on the adversary, in our case, a forensic practitioner. One construction of the adversary model is an evidence collection and analysis methodology for Android devices. Using the methodology with six popular cloud apps, we were successful in extracting various information of forensic interest in both the external and internal storage of the mobile device

    Forensic Analysis of the ChatSecure Instant Messaging Application on Android Smartphones

    Get PDF
    We present the forensic analysis of the artifacts generated on Android smartphones by ChatSecure, a secure Instant Messaging application that provides strong encryption for transmitted and locally-stored data to ensure the privacy of its users. We show that ChatSecure stores local copies of both exchanged messages and files into two distinct, AES-256 encrypted databases, and we devise a technique able to decrypt them when the secret passphrase, chosen by the user as the initial step of the encryption process, is known. Furthermore, we show how this passphrase can be identified and extracted from the volatile memory of the device, where it persists for the entire execution of ChatSecure after having been entered by the user, thus allowing one to carry out decryption even if the passphrase is not revealed by the user. Finally, we discuss how to analyze and correlate the data stored in the databases used by ChatSecure to identify the IM accounts used by the user and his/her buddies to communicate, as well as to reconstruct the chronology and contents of the messages and files that have been exchanged among them. For our study we devise and use an experimental methodology, based on the use of emulated devices, that provides a very high degree of reproducibility of the results, and we validate the results it yields against those obtained from real smartphones
    • …
    corecore