284 research outputs found

    Randomized encoding of combinational and sequential logic for resistance to hardware Trojans

    Get PDF
    Globalization of micro-chip fabrication has opened a new avenue of cyber-crime. It is now possible to insert hardware Trojans directly into a chip during the manufacturing process. These hardware Trojans are capable of destroying a chip, reducing performance or even capturing sensitive data. To date, defensive methods have focused on detection of the Trojan circuitry or prevention through design for security methods. This dissertation presents a shift away from prevention and detection to a design methodology wherein one no longer cares if a Trojan is present or not. The Randomized Encoding of Combinational Logic for Resistance to Data Leakage or RECORD process is presented in the first of three papers. This chip design process utilizes dual rail encoding and Quilt Packaging to create a secure combinational design that can resist data leakage even when the full design is known to an attacker. This is done with only a 2.28x-2.33 x area increase and 1.7x-2.24x increase in power. The second paper describes a new method, Sequential RECORD, which introduces additional randomness and moves to 3D split manufacturing to isolate the secure areas of the design. Sequential RECORD is shown to work with 3.75x area overhead and 4.5x power increase with a 3% reduction in slack. Finally, the RECORD concept is refined into a Time Division Multiplexed (TDM) version in the third paper, which reduces area and power overhead by 63% and 56% respectively. A method to safely utilize commercial chips based on the TDM RECORD concept is also demonstrated. This method allows the commercial chip to be operated safely without modification at the cost of latency, which increases by 3.9x --Abstract, page iv

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    A Survey of hardware protection of design data for integrated circuits and intellectual properties

    No full text
    International audienceThis paper reviews the current situation regarding design protection in the microelectronics industry. Over the past ten years, the designers of integrated circuits and intellectual properties have faced increasing threats including counterfeiting, reverse-engineering and theft. This is now a critical issue for the microelectronics industry, mainly for fabless designers and intellectual properties designers. Coupled with increasing pressure to decrease the cost and increase the performance of integrated circuits, the design of a secure, efficient, lightweight protection scheme for design data is a serious challenge for the hardware security community. However, several published works propose different ways to protect design data including functional locking, hardware obfuscation, and IC/IP identification. This paper presents a survey of academic research on the protection of design data. It concludes with the need to design an efficient protection scheme based on several properties
    • …
    corecore