5 research outputs found

    Hardware Acceleration in Genode OS Using Dynamic Partial Reconfiguration

    Get PDF
    Algorithms with operations on large regular data structures such as image processing can be highly accelerated when executed as hardware tasks in an FPGA fabric. The Dynamic Partial Reconfiguration (DPR) feature of new SRAM-based FPGA families allows a dynamic swapping and replacement of hardware tasks during runtime. Particularly embedded systems with processing chains that change over time or that are too large to be implemented in an FPGA fabric in parallel, benefit from DPR. In this paper we present a complete framework for hardware acceleration using DPR in the microkernel based Genode OS. This makes the DPR feature available not only for the high-performance computing field, but also for safety-critical applications. The new framework is evaluated for an exemplary imaging application running on a Xilinx Zynq-7000 SoC

    Hardware and Software Task Scheduling for ARM-FPGA Platforms

    Get PDF
    ARM-FPGA coupled platforms allow accelerating the computation of specific algorithms by executing them in the FPGA fabric. Several computation steps of our case study for a stereo vision application have been accelerated by hardware implementations. Dynamic Partial Reconfiguration places these hardware tasks in the programmable logic at appropriate times. For an efficient scheduling, it needs to be decided when and where to execute a task. Although there already exist hardware/software scheduling strategies and algorithms, none exploit all possible optimization techniques: re-use, prefetching, parallelization, and pipelining of hardware tasks. The scheduling algorithm proposed in this paper takes this into account and optimizes for the objectives latency/throughput and power/energy

    A hardware framework for on-chip FPGA acceleration

    No full text

    A Hardware Framework for on-Chip FPGA Acceleration

    No full text
    corecore