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Abstract—Reducing the configuration time of portions of an
FPGA at run time is crucial in contemporary FPGA-based
accelerators. In this work, we propose a method to increase the
throughput for FPGA dynamic partial reconfiguration by using
standard IP blocks. The throughput is increased by over-clocking
the configuration bitstream circuitry beyond the limits stated
in the specifications of these standard blocks. The experimental
results show that the most power efficient implementation can
reach a throughput of about 780 MB/s, corresponding to a config-
uration latency of about 670 micro-seconds for bitstreams of 1.2
MB. We also investigate alternatives to boost the reconfiguration
throughput and sketch a methodology to achieve the most power
efficient implementation of FPGA-based accelerators.

I. INTRODUCTION

Power efficiency is the key feature of contemporary com-
puter systems: both for high-end and warehouse-scale com-
puters, and for portable computers and embedded systems
(Internet-of-Things, or IoTs).

A proven way to increase power efficiency is the use of
hardware accelerators, which can perform the computation of
specific applications rapidly and at lower energy [1]. Accelera-
tors, such as GPUs, are employed in super-computers [2] and
servers running heavy computations; e.g., machine learning
[3], financial applications [4], etc..

In the “dark silicon” era [5], since the whole chip (die) can-
not be powered simultaneously at the maximum performance,
a viable solution is to have heterogeneous cores crafted for
specific applications (Application Specific Processors, ASPs):
a web server, a crypto engine, a decimal processor, etc..

However, because of the unlimited number of applications,
especially in IoTs, it is nearly impossible to pack all the
necessary ASPs in a specific System-on-Chip (SoC), since
the SoC must be produced in high volumes to justify the
production costs.

In this context, the implementation of ASPs in a reconfig-
urable fabric, such as FPGAs, can bridge the gap between
acceleration for any computation-intensive application and
low cost for low volumes. Moreover, since FPGAs can be
re-configured on-the-fly (partial dynamic reconfiguration, or
PDR), the same physical piece of silicon can be used to
implement several ASPs, configured on demand.

For these reasons, the two major FPGA players, Xilinx
and Intel (formerly Altera), offer SoC or SiP (System in a
Package) solutions in which FPGA fabric to implement custom
processors is placed next to cores [6], [7].

To efficiently use these reconfigurable accelerators on com-
puting workloads, it is important to keep the configuration time
(latency) as short as possible. With low reconfiguration latency,
we can seamlessly change the hardware (ASP), similarly to
what happens with dynamically loaded software routines, with
negligible performance overheads.

In this work, we focus on the FPGA dynamic partial
reconfiguration. Our approach, based on previous work [8],
[9], resorts to over-clocking the hardware blocks necessary
for the PDR. We present an analysis of the PDR system and
experimental results of actual runs under different conditions.

Since over-clocking has an impact on the system’s robust-
ness, we test our design under different operating temperatures
to see when the over-clocked implementation fails. The latter
aspect is very important for industrial IoT computers working
in harsh environments, such as factories.

The main contributions of this paper are:
• the design of an architecture for PDR to reduce the

configuration latency based on over-clocking.
• Moreover, we measure the actual power dissipation in

the FPGA chip at different die temperature to check
the system’s robustness and to determine which over-
clocking rate gives the best trade-off throughput vs.
energy (power efficiency).

• We also compare our method with recent related work
using ad-hoc hardware blocks to see how distant is our
approach based on standard blocks.

• Finally, we propose the design of an improved PDR
system, based on a custom implementation of the memory
interface to boost the reduce the reconfiguration latency
even more.

The results of our experiments on power efficiency for
the PDR system can be easily extended to any FPGA-placed
hardware block when multiple clocking rates are supported.

II. IMPLEMENTATION PLATFORM AND FRAMEWORK

The platform selected to implement the design is the Zed-
Board hosting the Z-7020 device, of the Xilinx Zynq-7000 SoC
family [6]. The Xilinx Zynq comprises two different parts: the
Processing System (PS) – a dual-core ARM Cortex-A9 with
two NEON Media Processing Engines for SIMD operations –
and the Programmable Logic (PL) – an FPGA based on the
Xilinx Artix-7 technology.

The interconnection between the PS and the PL is provided
by the AMBA AXI bus. The AXI4-Stream is the protocol



used to transfer large data sets; e.g., via direct memory access
(DMA).

The PL part can be programmed, or configured, statically
by loading the bitstream in the configuration memory before
starting using the FPGA, or dynamically (partial reconfigura-
tion) by loading bitstreams only to subsets of the configuration
memory corresponding to selected areas of the FPGA.

The static configuration allows the maximum flexibility in
terms of architecture of the processor implemented and can
stretch to the maximum usable area of the PL.

The dynamic partial configuration, can be done on-the-fly
on one portion of the PL, while other parts of the PL, keep
running.

The configuration of the FPGA can be done by the PS
through the Processor Configuration Access Port (PCAP), or
by the Internal Configuration Access Port (ICAP), a hardware
block that can read and write the FPGA configuration memory.

The ICAP allows to configure the FPGA directly from
the PL. For this reason, full bitstreams (static configurations)
cannot be loaded by the ICAP because the ICAP itself is part
of the PL.

The architecture of our acceleration framework is designed
taking into account several aspects, including:

• dynamic reconfiguration of reserved areas;
• clock rate adaptable to the specific ASP timing constraint;
• amount of data transferred from/to memory.
Fig. 1 shows the architecture of the accelerator with four

reconfigurable portions (RP 1–4). In the figure, we identify
the “static part” and the “dynamic part” of the PL.

The interface toward the PS side is through four high-
performance ports (HP 0-3) which connect the PL to the ARM
CPUs and the DRAM controller, and through the AXI ACP
port which connects directly to the cache. In addition, the
interface PS-PL provides four programmable clocks.

The static part is loaded statically by the PCAP and does
not change on-the-fly. It consists of five AXI4-Stream blocks,
the ICAP, and a clock management unit.

Since port ACP is not connected to the DRAM controller,
the ASP connected to this port, cannot transfer large chunks
of data. The maximum size is set by the cache size (512 KB).

Each of the four RPs in the dynamic part is dynamically
reconfigured by the ICAP. Each RP can be connected to the
PS through the 32-bit AXI GP ports using the AXI4-Lite bus.

Interrupts are used to signal change of status (end of
configuration, data ready, etc.) in the RP areas to the PS.

Moreover, each RP can be clocked at a specific frequency
thanks to the “Clock Manager” (Fig. 1), allowing maximum
flexibility and IP-block reuse.

III. ARCHITECTURE FOR ICAP PARTIAL CONFIGURATION

The starting point of this work is the architecture for
the ICAP-based partial reconfiguration presented in [9] and
derived from [8]. As proposed in [8], by connecting an AXI4-
Stream interface to the ICAP and transferring the bitstream via
DMA, we obtain a transfer rate close to the theoretical limit
of 400 MB/s. Then, we increase the clock rate (over-clocking)
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Fig. 2. Architecture for ICAP-based partial configuration.

of the hardware blocks controlling the partial configuration
beyond the limits they are designed for, and we measure the
impact on the throughput.

We use a Cyclic Redundancy Check (CRC) block, which
reads back the configuration bitstream and checks the CRC of
the configuration memory content, to determine whether the
reconfiguration was successful.

The hardware architecture of our ICAP-based partial recon-
figuration is detailed in Fig. 2. We briefly describe the relevant
blocks.

The communication between the PS and the PL is handled
by two AXI interconnects: one for the ARM cores and another
to connect to the DRAM memory.

The Clock Wizard is a Xilinx IP core to adapt the circuit
clock to the user’s requirements. We use the Clock Wizard to
set the clock frequency of our design under test. For testing
purposes, we select the over-clocking frequency by the 8
switches on the ZedBoard. Clearly, for an actual system, this
frequency will be set by a software command.

The over-clock signal operates both the DMA (Direct
Memory Access) and ICAP (Internal Configuration Access



Fig. 3. OLED display: system status.
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Fig. 4. Testing of the dynamic partial reconfiguration.

Port).
The ICAP block, created in previous work [9], reads and

writes the FPGA configuration memory.
The CRC Bitstream Read-Back block reads back contin-

uously in the background the whole bitstream to check the
CRC of the configuration memory content. If a CRC error is
detected an interrupt is asserted.

The hardware blocks are completed by a temperature sens-
ing block and an OLED display controller, not depicted in
Fig. 2.

The OLED panel (Fig. 3) displays the current over-clocking
frequency and chip temperature, the result of CRC testing, and
the partial bitstream transfer time.

The whole hardware in the PL is controlled by a C program
running in the PS.

IV. EXPERIMENTAL RESULTS

The testing flow of our over-clocked partial reconfiguration
scheme is shown in Fig. 4.

The application software used to test the system is loaded
on an SD memory card. The Zedboard is booted from the SD
card. The memory card also contains two bitstreams, about
1.2 MB in size, to partially reconfigure a selected area of the
FPGA (RP 1–4 in Fig. 1).

Table I shows the throughput achieved in transferring the
bitstreams to the configuration memory by the over-clocked
ICAP+DMA.

The throughput is computed off-line by dividing the bit-
stream size by the configuration latency, determined by the
C-timer and displayed on the OLED display.

We use the Zedboard’s switches to set the over-clocking
frequency. Moreover, we use two push-buttons to start the
ICAP operations and load one of the two bitstreams. The
testing results are displayed on the OLED screen. This setup
can be used to test any over-clocked block.

ICAP Frequency Config. Latency Throughput CRC
[MHz] [µs] [MB/s]

100 1325.60 399.06 valid
140 947.40 558.12 valid
180 737.50 716.96 valid
200 676.30 781.84 valid
240 671.90 786.96 valid
280 669.20 790.14 valid
310 N/A no interrupt N/A valid
320 N/A no interrupt N/A not valid
360 N/A no interrupt N/A not valid

TABLE I
THROUGHPUT VS. FREQUENCY WHEN OVER-CLOCKING.

Fig. 5. Throughput vs. frequency.

We tested several over-clocking frequencies, starting from
100 MHz which is the nominal frequency the DMA and ICAP
blocks are designed for.

The system stopped working when over-clocked at 310
MHz, where the CRC block never asserted the interrupt.
For higher clock rates, also the CRC value resulted in error
(bitstream not correctly loaded).

By plotting the results of our test in a throughput-frequency
plane (Fig. 5), we can better see that the throughput increases
linearly until about 200 MHz when the curve flattens.

This saturation is due to the AXI DMA, which is guaranteed
to work up to 150 MHz in Xilinx’s Application Notes. We
found that, for our system, this limit can be raised up to 310
MHz, although, above 200 MHz, the performance improve-
ments are marginal.

In conclusion, we measured that the maximum throughput
for an ICAP-based partial bitstream transfer is 790 MB/s at
280 MHz. However, the knee-bend performance is at 200 MHz
with a throughput of 782 MB/s. At higher clock frequencies,
the bitstream transfer fails and the CRC block correctly detects
an error.

A. Temperature Stress

To check how robust to temperature variations our over-
clocking scheme is, we heated up the Zynq chip with a heat
gun by concentrating the heat on the Zynq’s heat sink and
by keeping the rest of the ZedBoard at room temperature. The
die temperature is measured by the built-in temperature sensor
and read on the OLED display.

We performed again the tests of Table I up to 310 MHz
starting from a die temperature of 40oC until 100oC, at steps of
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Fig. 6. Power dissipation in the Zynq SoC at different frequencies and
temperatures.

10oC. All the tests succeeded except the test done at 310 MHz
and 100oC which failed. This proves that the over-clocking is
robust enough to withstand the temperature variations typical
of harsh computing environments.

B. Power Efficiency

The ZedBoard hosting the Zynq SoC is equipped with
current-sense pin-headers to measure the power dissipation of
the whole board. We measured an average power dissipation
of P0 = 2.2 W (at temperature 40oC) when the Zynq SoC is
idle (no processing in the PS) and the PL is not programmed.
Then, we activated the Zynq and run the reconfiguration
experiments at the different clock frequencies (100–310 MHz)
and temperature steps of 10oC from 40oC to 100oC. We
consider the power consumption in the Zynq only

PPDR = PT
f − P0 [W ]

where PT
f is the actual reading at frequency f and temper-

ature T , and P0 is our reference power dissipation when no
computation is performed in the Zynq (at 40oC).

The measured data points are plotted in Fig. 6. For clarity,
we only plot the values obtained for temperature steps of 20oC.

By considering the power-frequency relationship, Fig. 6
shows that the dynamic power dissipation increases linearly
with frequency and that the slope is constant at the different
temperatures. In other words, the dynamic power dissipation
is not affected by the die temperature in our experiments.

As for the static power dissipation, Fig. 6 confirms the more
than linear increase of power with temperature.

By combining the data on the throughput and the power
dissipation, we can evaluate the power efficiency of our PDR
by ICAP defined as “performance-per-watt” (PpW):

PpW =
throughput

PPDR

[ MBytes

s ·W = J

]

Table II shows that since the throughput plateaus at
200 MHz, but PPDR keeps increasing with frequency, the
most power efficient implementation is about 600 MB/J at
200 MHz.

Frequency PPDR Throughput Power Eff.
[MHz] [W ] [MB/s] [MB/J ]

100 1.14 399.06 351
140 1.23 558.12 453
180 1.28 716.96 560
200 1.30 781.84 599
240 1.36 786.96 577
280 1.44 790.14 550

TABLE II
POWER EFFICIENCY FOR OVER-CLOCKING AT 40oC.

V. RELATED WORK

We now compare our over-clocked dynamic partial recon-
figuration environment with other relevant work in the area.
The results of the comparison are reported in Table III.

1) VF-2012: The authors of [8], presented in [10] an
over-clocked ICAP controller to maximize throughput. The
throughput of 400 MB/s at the nominal clock of 100 MHz
scales nicely to 838.55 MB/s at 210 MHz. Above this fre-
quency, the reconfiguration fails and above 300 MHz, initiat-
ing a reconfiguration, freezes the whole FPGA. No CRC is
implemented in [10].

2) HP-2011: In [11], the authors proposed to use a multi-
port memory controller to interface the ICAP. Furthermore,
they also introduce over-clocking with active feedback to
ensure that the device voltages and temperatures are within
nominal values. The maximum throughput achieved (Xilinx
Virtex-5) is about 420 MB/s at 133 MHz.

3) HKT-2011: In [12], the authors present the design of
an enhanced hard macro for the ICAP. For different system
clocks, the authors use the ICAP hard macro with different
over-clocking methods and achieve a maximum throughput of
2200 MB/s by clocking the ICAP at 550 MHz. The system,
implemented on a Xilinx Virtex-5, does not include a processor
and the configuration bitstreams (up to 50 KB) are buffered
in a FIFO.

Design Platform ICAP frequency Throughput
[MHz] [MB/s]

VF-2012 Virtex-6 210 839
HP-2011 Virtex-5 133 419

HKT-2011 Virtex-5 550 2200
This work Zynq-7000 280 790

TABLE III
COMPARISON WITH RELATED WORK.

By comparing the data in Table III, our proposed over-
clocked ICAP has the same performance of VF-2012 at nom-
inal 100 MHz. While the throughput scales linearly up to 210
MHz in VF-2012, our system saturates above 200 MHz when
the DMA cannot keep the bus full in every cycle, However,
our system performs a CRC to automatically detect errors.
In addition, we perform a power dissipation and temperature
analysis to provide more insight in the PDR.

With respect to the implementation HP-2011, our over-
clocked ICAP offers a higher throughput. However, HP-2011
is implemented in an older technology and the gap might be
narrower if scaled to the same technology.



The implementation HKT-2011 shows the highest through-
put, but this is obtained for small sized bitstreams. Since what
really matters for on-the-fly PDR is the reconfiguration latency,
it is very hard to assess if the 2200 MB/s throughput can be
sustained through a DMA necessary to transfer bitstreams of
about 1.4 MB.

VI. PROPOSED PARTIAL RECONFIGURATION
ENVIRONMENT

The system that provides the bitstream transfer from the
DRAM system memory to the PL through ICAP is not the
best in terms of throughput performance. The bottleneck is
located within the link Memory Port → AXI Interconnect →
AXI DMA.

Here we propose a new dedicated system, based on [12],
that uses a different interconnection, thus obtaining the maxi-
mum speed from the ICAP transfer.

Our target is to redesign the ICAP transfer as sketched in
Fig. 7. The functionality of the architecture is explained next.

The partial bitstream is pre-loaded in the SRAM for the re-
configuration to take place at the highest possible throughput.
The SRAM memory can store one partial bitstream a time,
thus only one hardware IP block.

The Memory Controller manages the write and read
tasks of the SRAM. Specifically, it generates the read/write
addresses.

The PR (Partial Reconfiguration) Controller is an arbiter
between the SRAM and the ICAP: it monitors the reconfigu-
ration timing and the ICAP interrupts.

The Bitstream Decompressor decompresses the bitstream.
The PS Scheduler is linked with the control blocks to

manage the SRAM write procedure (from the DRAM). It
manages all the partial bitstreams that are needed by the
whole architecture, and it pre-loads the next on the SRAM,
whilst, for example, the current partially configurable hardware
accelerator is performing its task.

By exploring state-of-the-art memory devices, we found
a SRAM from Cypress (CY7C2263KV18) that meets our
throughput requirements: Double Date Rate (DDR) interfaces
on both read and write ports at 550 MHz. The read access
time is 0.45 ns.

Based on the maximum clock frequency and the required
data bus (36 bit), the maximum throughput is

throughput = 550 MHz · 36 bit

2
= 1237.5 [MB/s].

This theoretical throughput is almost double the one measured
by the current system in Sec. IV.

VII. CONCLUSIONS

In this work we presented a method to reduce the reconfig-
uration latency for FPGA-based accelerators by boosting the
throughput for dynamic partial reconfiguration. The through-
put is increased by over-clocking the DMA and ICAP beyond
the limits stated in the specifications of these standard IP
blocks.

Memory

Controller

PR

Controller

Bitstream

Decompression

ICAP
Configuration

Memory

SRAM
PS

Scheduler

Fig. 7. Proposed partial reconfiguration via ICAP.

The experimental results show that, from the nominal
throughput of about 400 MB/s, we can reach a maximum
throughput of 790 MB/s by over-clocking to 280 MHz.
However, by considering the power dissipation as well, the
most power efficient implementation of the dynamic partial
reconfiguration is at a throughput of 782 MB/s at 200 MHz,
that is a transfer of about 600 MB per Joule, and about 670
µs for 1.2 MB bitstreams typical for our ASPs.

Moreover, inspired by related work, we investigated alter-
natives to boost the reconfiguration throughput by exploring
the design of SRAM-based custom IP blocks and interfaces
to deliver an estimated 1250 MB/s throughput.

The power dissipation and temperature analysis, presented
in Sec. IV for the over-clocked ICAP, can be extended to any
IP block implemented in the FPGA to determine its best trade-
off throughput vs. energy, and design the most power efficient
accelerator for the specific application and platform.
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