731 research outputs found

    Scratchpad Sharing in GPUs

    Full text link
    GPGPU applications exploit on-chip scratchpad memory available in the Graphics Processing Units (GPUs) to improve performance. The amount of thread level parallelism present in the GPU is limited by the number of resident threads, which in turn depends on the availability of scratchpad memory in its streaming multiprocessor (SM). Since the scratchpad memory is allocated at thread block granularity, part of the memory may remain unutilized. In this paper, we propose architectural and compiler optimizations to improve the scratchpad utilization. Our approach, Scratchpad Sharing, addresses scratchpad under-utilization by launching additional thread blocks in each SM. These thread blocks use unutilized scratchpad and also share scratchpad with other resident blocks. To improve the performance of scratchpad sharing, we propose Owner Warp First (OWF) scheduling that schedules warps from the additional thread blocks effectively. The performance of this approach, however, is limited by the availability of the shared part of scratchpad. We propose compiler optimizations to improve the availability of shared scratchpad. We describe a scratchpad allocation scheme that helps in allocating scratchpad variables such that shared scratchpad is accessed for short duration. We introduce a new instruction, relssp, that when executed, releases the shared scratchpad. Finally, we describe an analysis for optimal placement of relssp instructions such that shared scratchpad is released as early as possible. We implemented the hardware changes using the GPGPU-Sim simulator and implemented the compiler optimizations in Ocelot framework. We evaluated the effectiveness of our approach on 19 kernels from 3 benchmarks suites: CUDA-SDK, GPGPU-Sim, and Rodinia. The kernels that underutilize scratchpad memory show an average improvement of 19% and maximum improvement of 92.17% compared to the baseline approach

    Optimizing the flash-RAM energy trade-off in deeply embedded systems

    Full text link
    Deeply embedded systems often have the tightest constraints on energy consumption, requiring that they consume tiny amounts of current and run on batteries for years. However, they typically execute code directly from flash, instead of the more energy efficient RAM. We implement a novel compiler optimization that exploits the relative efficiency of RAM by statically moving carefully selected basic blocks from flash to RAM. Our technique uses integer linear programming, with an energy cost model to select a good set of basic blocks to place into RAM, without impacting stack or data storage. We evaluate our optimization on a common ARM microcontroller and succeed in reducing the average power consumption by up to 41% and reducing energy consumption by up to 22%, while increasing execution time. A case study is presented, where an application executes code then sleeps for a period of time. For this example we show that our optimization could allow the application to run on battery for up to 32% longer. We also show that for this scenario the total application energy can be reduced, even if the optimization increases the execution time of the code

    Ozone: Efficient Execution with Zero Timing Leakage for Modern Microarchitectures

    Full text link
    Time variation during program execution can leak sensitive information. Time variations due to program control flow and hardware resource contention have been used to steal encryption keys in cipher implementations such as AES and RSA. A number of approaches to mitigate timing-based side-channel attacks have been proposed including cache partitioning, control-flow obfuscation and injecting timing noise into the outputs of code. While these techniques make timing-based side-channel attacks more difficult, they do not eliminate the risks. Prior techniques are either too specific or too expensive, and all leave remnants of the original timing side channel for later attackers to attempt to exploit. In this work, we show that the state-of-the-art techniques in timing side-channel protection, which limit timing leakage but do not eliminate it, still have significant vulnerabilities to timing-based side-channel attacks. To provide a means for total protection from timing-based side-channel attacks, we develop Ozone, the first zero timing leakage execution resource for a modern microarchitecture. Code in Ozone execute under a special hardware thread that gains exclusive access to a single core's resources for a fixed (and limited) number of cycles during which it cannot be interrupted. Memory access under Ozone thread execution is limited to a fixed size uncached scratchpad memory, and all Ozone threads begin execution with a known fixed microarchitectural state. We evaluate Ozone using a number of security sensitive kernels that have previously been targets of timing side-channel attacks, and show that Ozone eliminates timing leakage with minimal performance overhead

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Performance analysis and optimization of the Java memory system

    Get PDF

    LEAP Scratchpads: Automatic Memory and Cache Management for Reconfigurable Logic [Extended Version]

    Get PDF
    CORRECTION: The authors for entry [4] in the references should have been "E. S. Chung, J. C. Hoe, and K. Mai".Developers accelerating applications on FPGAs or other reconfigurable logic have nothing but raw memory devices in their standard toolkits. Each project typically includes tedious development of single-use memory management. Software developers expect a programming environment to include automatic memory management. Virtual memory provides the illusion of very large arrays and processor caches reduce access latency without explicit programmer instructions. LEAP scratchpads for reconfigurable logic dynamically allocate and manage multiple, independent, memory arrays in a large backing store. Scratchpad accesses are cached automatically in multiple levels, ranging from shared on-board, RAM-based, set-associative caches to private caches stored in FPGA RAM blocks. In the LEAP framework, scratchpads share the same interface as on-die RAM blocks and are plug-in replacements. Additional libraries support heap management within a storage set. Like software developers, accelerator authors using scratchpads may focus more on core algorithms and less on memory management. Two uses of FPGA scratchpads are analyzed: buffer management in an H.264 decoder and memory management within a processor microarchitecture timing model

    An extensible framework for multicore response time analysis

    Get PDF
    In this paper, we introduce a multicore response time analysis (MRTA) framework, which decouples response time analysis from a reliance on context independent WCET values. Instead, the analysis formulates response times directly from the demands placed on different hardware resources. The MRTA framework is extensible to different multicore architectures, with a variety of arbitration policies for the common interconnects, and different types and arrangements of local memory. We instantiate the framework for single level local data and instruction memories (cache or scratchpads), for a variety of memory bus arbitration policies, including: Round-Robin, FIFO, Fixed-Priority, Processor-Priority, and TDMA, and account for DRAM refreshes. The MRTA framework provides a general approach to timing verification for multicore systems that is parametric in the hardware configuration and so can be used at the architectural design stage to compare the guaranteed levels of real-time performance that can be obtained with different hardware configurations. We use the framework in this way to evaluate the performance of multicore systems with a variety of different architectural components and policies. These results are then used to compose a predictable architecture, which is compared against a reference architecture designed for good average-case behaviour. This comparison shows that the predictable architecture has substantially better guaranteed real-time performance, with the precision of the analysis verified using cycle-accurate simulation
    corecore