8 research outputs found

    A guide to time-resolved and parameter-free measures of spike train synchrony

    Full text link
    Measures of spike train synchrony have proven a valuable tool in both experimental and computational neuroscience. Particularly useful are time-resolved methods such as the ISI- and the SPIKE-distance, which have already been applied in various bivariate and multivariate contexts. Recently, SPIKE-Synchronization was proposed as another time-resolved synchronization measure. It is based on Event-Synchronization and has a very intuitive interpretation. Here, we present a detailed analysis of the mathematical properties of these three synchronization measures. For example, we were able to obtain analytic expressions for the expectation values of the ISI-distance and SPIKE-Synchronization for Poisson spike trains. For the SPIKE-distance we present an empirical formula deduced from numerical evaluations. These expectation values are crucial for interpreting the synchronization of spike trains measured in experiments or numerical simulations, as they represent the point of reference for fully randomized spike trains.Comment: 8 pages, 4 figure

    Hearts and Politics: Metrics for Tracking Biorhythm Changes during Brexit and Trump

    Full text link
    Our internal experience of time reflects what is going in the world around us. Our body's natural rhythms get disrupted for a variety of external factors, including exposure to collective events. We collect readings of steps, sleep, and heart rates from 11K users of health tracking devices in London and San Francisco. We introduce measures to quantify changes in not only volume of these three bio-signals (as previous research has done) but also synchronicity and periodicity, and we empirically assess how strong those variations are, compared to random expectation, during four major events: Christmas, New Year's Eve, Brexit, and the US presidential election of 2016 (Donald Trump's election). While Christmas and New Year's eve are associated with short-term effects, Brexit and Trump's election are associated with longer-term disruptions. Our results promise to inform the design of new ways of monitoring population health at scale.Comment: 5 page

    Which spike train distance is most suitable for distinguishing rate and temporal coding?

    Full text link
    Background: It is commonly assumed in neuronal coding that repeated presentations of a stimulus to a coding neuron elicit similar responses. One common way to assess similarity are spike train distances. These can be divided into spike-resolved, such as the Victor-Purpura and the van Rossum distance, and time-resolved, e.g. the ISI-, the SPIKE- and the RI-SPIKE-distance. New Method: We use independent steady-rate Poisson processes as surrogates for spike trains with fixed rate and no timing information to address two basic questions: How does the sensitivity of the different spike train distances to temporal coding depend on the rates of the two processes and how do the distances deal with very low rates? Results: Spike-resolved distances always contain rate information even for parameters indicating time coding. This is an issue for reasonably high rates but beneficial for very low rates. In contrast, the operational range for detecting time coding of time-resolved distances is superior at normal rates, but these measures produce artefacts at very low rates. The RI-SPIKE-distance is the only measure that is sensitive to timing information only. Comparison with Existing Methods: While our results on rate-dependent expectation values for the spike-resolved distances agree with \citet{Chicharro11}, we here go one step further and specifically investigate applicability for very low rates. Conclusions: The most appropriate measure depends on the rates of the data being analysed. Accordingly, we summarize our results in one table that allows an easy selection of the preferred measure for any kind of data.Comment: 14 pages, 6 Figures, 1 Tabl

    Blindfold learning of an accurate neural metric

    Full text link
    The brain has no direct access to physical stimuli, but only to the spiking activity evoked in sensory organs. It is unclear how the brain can structure its representation of the world based on differences between those noisy, correlated responses alone. Here we show how to build a distance map of responses from the structure of the population activity of retinal ganglion cells, allowing for the accurate discrimination of distinct visual stimuli from the retinal response. We introduce the Temporal Restricted Boltzmann Machine to learn the spatiotemporal structure of the population activity, and use this model to define a distance between spike trains. We show that this metric outperforms existing neural distances at discriminating pairs of stimuli that are barely distinguishable. The proposed method provides a generic and biologically plausible way to learn to associate similar stimuli based on their spiking responses, without any other knowledge of these stimuli

    Measures of spike train synchrony

    Get PDF

    Binaural sound source localization using machine learning with spiking neural networks features extraction

    Get PDF
    Human and animal binaural hearing systems are able take advantage of a variety of cues to localise sound-sources in a 3D space using only two sensors. This work presents a bionic system that utilises aspects of binaural hearing in an automated source localisation task. A head and torso emulator (KEMAR) are used to acquire binaural signals and a spiking neural network is used to compare signals from the two sensors. The firing rates of coincidence-neurons in the spiking neural network model provide information as to the location of a sound source. Previous methods have used a winner-takesall approach, where the location of the coincidence-neuron with the maximum firing rate is used to indicate the likely azimuth and elevation. This was shown to be accurate for single sources, but when multiple sources are present the accuracy significantly reduces. To improve the robustness of the methodology, an alternative approach is developed where the spiking neural network is used as a feature pre-processor. The firing rates of all coincidence-neurons are then used as inputs to a Machine Learning model which is trained to predict source location for both single and multiple sources. A novel approach that applied spiking neural networks as a binaural feature extraction method was presented. These features were processed using deep neural networks to localise multisource sound signals that were emitted from different locations. Results show that the proposed bionic binaural emulator can accurately localise sources including multiple and complex sources to 99% correctly predicted angles from single-source localization model and 91% from multi-source localization model. The impact of background noise on localisation performance has also been investigated and shows significant degradation of performance. The multisource localization model was trained with multi-condition background noise at SNRs of 10dB, 0dB, and -10dB and tested at controlled SNRs. The findings demonstrate an enhancement in the model performance in compared with noise free training data
    corecore