2,635 research outputs found

    On the genericity properties in networked estimation: Topology design and sensor placement

    Full text link
    In this paper, we consider networked estimation of linear, discrete-time dynamical systems monitored by a network of agents. In order to minimize the power requirement at the (possibly, battery-operated) agents, we require that the agents can exchange information with their neighbors only \emph{once per dynamical system time-step}; in contrast to consensus-based estimation where the agents exchange information until they reach a consensus. It can be verified that with this restriction on information exchange, measurement fusion alone results in an unbounded estimation error at every such agent that does not have an observable set of measurements in its neighborhood. To over come this challenge, state-estimate fusion has been proposed to recover the system observability. However, we show that adding state-estimate fusion may not recover observability when the system matrix is structured-rank (SS-rank) deficient. In this context, we characterize the state-estimate fusion and measurement fusion under both full SS-rank and SS-rank deficient system matrices.Comment: submitted for IEEE journal publicatio

    Static Output Feedback: On Essential Feasible Information Patterns

    Full text link
    In this paper, for linear time-invariant plants, where a collection of possible inputs and outputs are known a priori, we address the problem of determining the communication between outputs and inputs, i.e., information patterns, such that desired control objectives of the closed-loop system (for instance, stabilizability) through static output feedback may be ensured. We address this problem in the structural system theoretic context. To this end, given a specified structural pattern (locations of zeros/non-zeros) of the plant matrices, we introduce the concept of essential information patterns, i.e., communication patterns between outputs and inputs that satisfy the following conditions: (i) ensure arbitrary spectrum assignment of the closed-loop system, using static output feedback constrained to the information pattern, for almost all possible plant instances with the specified structural pattern; and (ii) any communication failure precludes the resulting information pattern from attaining the pole placement objective in (i). Subsequently, we study the problem of determining essential information patterns. First, we provide several necessary and sufficient conditions to verify whether a specified information pattern is essential or not. Further, we show that such conditions can be verified by resorting to algorithms with polynomial complexity (in the dimensions of the state, input and output). Although such verification can be performed efficiently, it is shown that the problem of determining essential information patterns is in general NP-hard. The main results of the paper are illustrated through examples

    Controllability Metrics, Limitations and Algorithms for Complex Networks

    Full text link
    This paper studies the problem of controlling complex networks, that is, the joint problem of selecting a set of control nodes and of designing a control input to steer a network to a target state. For this problem (i) we propose a metric to quantify the difficulty of the control problem as a function of the required control energy, (ii) we derive bounds based on the system dynamics (network topology and weights) to characterize the tradeoff between the control energy and the number of control nodes, and (iii) we propose an open-loop control strategy with performance guarantees. In our strategy we select control nodes by relying on network partitioning, and we design the control input by leveraging optimal and distributed control techniques. Our findings show several control limitations and properties. For instance, for Schur stable and symmetric networks: (i) if the number of control nodes is constant, then the control energy increases exponentially with the number of network nodes, (ii) if the number of control nodes is a fixed fraction of the network nodes, then certain networks can be controlled with constant energy independently of the network dimension, and (iii) clustered networks may be easier to control because, for sufficiently many control nodes, the control energy depends only on the controllability properties of the clusters and on their coupling strength. We validate our results with examples from power networks, social networks, and epidemics spreading

    Evaluation of Design Methods for Geometric Control

    Get PDF

    Structural Completeness of a Multi-channel Linear System with Dependent Parameters

    Full text link
    It is well known that the "fixed spectrum" {i.e., the set of fixed modes} of a multi-channel linear system plays a central role in the stabilization of such a system with decentralized control. A parameterized multi-channel linear system is said to be "structurally complete" if it has no fixed spectrum for almost all parameter values. Necessary and sufficient algebraic conditions are presented for a multi-channel linear system with dependent parameters to be structurally complete. An equivalent graphical condition is also given for a certain type of parameterization
    • …
    corecore