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EVALUATION OF DESIGN METHODS FOR GEOMETRIC CONTROL

M. Kummel, M. Beran, L. Foldager and P.C. Hansen

Chemical Engineering Department
Technical University of Denmark, Lyngby, Denmark

ABSTRACT control THE GEOMETRIC APPROACH

Geometric control can produce desirable control by
decoupling the input disturbances from the selected
output variables. The basic principle for this method
was originally introduced by Wonham. The mathematical
complexity involved, however, makes the method very
hard to get accepted by the chemical commvunity. The
paper evaluates Wonham's original method together with
three other methods, i.e. eigenvalue/eigenvector
methods by Shah et al, the graph theory by Schizas and
Evans and the simplified method by Kummel et al. The
evaluation considers the basic potential of the me-
thods, the prerequisite of the designer, transparency,
computer demand, and potential for pole shift.

INTRODUCTION

A new approach to multivariable control called "A
Geometric Approach" has been developed by Wonham and
his coworkers refs. (1, 2, and 3). In this approach it
is recognized that the properties of a linear system
depend on the structure of the linear subspace generat-
ed by the given system in the state space. The design
problem of a control system is then regarded as synthe-
sizing a system in such a way that the resulting sy-
stem, which includes the control system, will generate
a linear subspace which has the desirable structure in
the state space so as to satisfy the design specifi-
cation.

By describing the design specifications of the
feedback controller as the structure of the feedback
subspace generated by the controller system, the design
is treated more intuitively, and better insight is ob-
tained as to the conditions for the existence of a
solution and other such problems as decoupling control
and disturbance localization, refs. (4 and 5).

Even with these contributions, the application of
geometric control is not widespread, possibly due to
the abstract nature of the underlying theory. Assuming
this is the case, there is a need for a simplified de-
sign method. Such a method, has been developed by ref.
(6) resulting in better insight into and simpler design
of the geometric control-ler.

Geometric control has been implemented on some pro-
cesses like evaporators refs. (5 and 7). In ref. (8)
the theoretical results for disturbance rejection on a
distillation column based on Wonham's results have been
developed, and they have evaluated the results through
simulation. Also in refs. (5 and 9) this problem has
been considered. A graph theoretic approach to the same
problem is developed in ref. (10).

In this paper the four above mentioned design me-
thods are evaluated and compared in order to offer some
guidance as to what method to prefer. The evaluation
considers the basic potential of the methods, the pre-
requisite of the designer, transparency, computer de-
mand and potential for poleshift.

The following development is a summary of the re-
sults in ref. (8) with a slightly different notation.
The multivariable system is described by

x(t) = Ax(t) + Bu(t) + Dg(t);
(1)

y(t) = Cx(t),

where the state vector x(t) has dimension n, the con-
trol vector u(t) dimension m, the output vector y(t)
dimension p, and the disturbance vector 3(t) dimension
d (where p < m). The matrices A(nxn), B(nxm), C(pxn),
and D(nxd) are time independent. The problem is now to
find the feedback matrix F(mxn) in

u = F x (2)
so that any disturbance q has no influence on the con-
trolled output y.

Note that through this definition, C may be differ-
ent from the usual output matrices. Insertion of eq.
(2) into eq. (1) yields

* = (A+BF)x + D,

y = C x .

(3a)
(3b)

With the initial condition x = 0, the output vector y
is obtained from eqs. (3a,b) as

y(t) = n C(A+BF)k DY; 8k(t-T)q(T)d
k=O

(4)

where 8 (t) is a scalar function (which can be deter-
mined through Cayley-Hamilton's theorem). For the out-
put variable y to be zero, one must require

C(A+BF)k D = {O}, k=0,1,2,.. ,n-l (5)

where D is the range of matrix D (i.e. D is spanned by
the columns of D). Eq. (5) is equivalent to

(A+BF)k DCN(C), k=O,1,2,...,n-l

where N(C), the null-space of C, is defined as

N(C) = {x £ Rn: C x = O}.

Eq. (6) is satisfied if

D C N(C)
(A+BF) DC D

(6)

(7)

(8a)
(8b)

and it can be shown that there exists a matrix F which
satisfies (8b) if, and only if

D C V* (9)

where V* is the supremal (A,B)-invariant subspace in
N(C) (see ref. (3)). V* can be obtained by the se-
quence:
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2) If p=m then it can be shown that A2 consists of the
eigenvalues of A22-B2B-lAA12. This means that A2 is
fixed and only A1 must be chosen

The remaining submatrices W21 and W22 can be com-
puted from the equations:

W21 A1 -P W21 = T W11 + SW51 AI

W22 A2 -P W22 = T W12 + S W12 A2

(25)

(26)

where S = 82 B1 , T = A21 - S A1 and P = A2 2

Next, the feedback matrix can be calculated from

F c (BT B) 81T(W AV-A) (27)

The importance in the method of Shah et al. is that in-
stead of determining the supremal (A,B)-invariant sub-
space through (10) and then solve (12), the closed-loop
eigenvalues and eigenvectors are chosen, and (25-26)
are solved.

Finally, the feedforward matrix KFF is calculated
from (19) and (22).

SIMPLIFIED GEOMETRIC DESIGN

The geometric design method as presented above may
appear to be difficult due to the abstract nature of
the underlying theory, especially the synthesis of the
supremal (A,B)-invariant subspace V*t An alternative
design procedure which is easier to handle and which
also gives a better insight into what is required con-
cerning the system outputs to obtain total disturbance
rejection has been developped, see ref. (6).

Let again C have the form (20). For the analysis
below, three submatrices A*, B* and D* are introduced.

Definition

The submatrices A*(pxn), B*(pxm) and D*(pxd) are defin-
ed to consist of those rows in the state matrix A, the
input matrix B and the disturbance matrix D, respec-
tively, which refer to the p decoupled states. With the
above assumption we obtain,

A = n

4

-- n o

AO

4&- d ---e
.

~~~~t

D* p

D = n -----------

I Do

The design method is
tamned submatrices.

I
B =:n

S

-c- m

BO

X

(28)

Theorem:

If B* has full rank (p) then the supremal (A,B)-in-1
variant subspace V* is equal to N(C), the null-space
of C.

If B* has full rank, then the following holds:

1) If D*=O, i.e. D* holds only null elements, then to-
tal disturbance rejection can be established
through geometric feedback control u = F x since
D c V* = N(C) will be satisfied.

2) If D* 0, then total disturbance rejec-tion is pos-
sible through geometric feedback control combined
with feedforward u = F x + KFF q. This is true,
since Dc V* + B = N(C) + B = Rn, which means that
eq. (16) is always satisfied, when B* has full
rank.

The feedback matrix can be derived from eq. (12),
which in this design method simplifies to

(A* + B* F)Nc = 0, (29)

where the multiplication with NC simply "picks out" the
n-p columns of (A*+B*F) which do not correspond to the
decoupled states. The feedforward matrix KFF can, if
needed, be derived from eq. (15) which in this design
method simplifies to

D* + B* KFF l 0 . (30)

Accordingly, a design procedure is developed where only
the submatrices A*, B* and D* are examined, followed by
the solution of eq. (29) and possibly eq. (30). At the
same time this procedure gives a quick answer to what
is required to obtain total disturbance rejection on
the system.

A STRUCTURAL APPROACH

The general principles of a graph theoretic ap-
proach to multivariable control system design have been
presented by Schizas and Evans ref. (10) and related to
the geometric approach. The graph theoretic, or struc-
tural, approach is by its nature restricted in scope,
but it would appear to have as much to offer as the
geometric analysis, and it has the added advantage of
being more intuitively obvious to the designer, parti-
cularly if he is familiar with the process to be con-
trolled.

Although useful computer aided techniques have been
developed (ref. (13)), to enable the analysis of large
scale systems, it is indicated here that the analysis
of quite large, or complex problems can be achieved
'manually'. This analysis is not necessarily restricted
to purely qualitative aspects, but it has a contribu-
tion to make to the evaluation of numerical parameters,
and to establishing an economy of design. A brief in-
troduction to the structural approach is given below.
For a more comprehensive presentation the readers are
referred to ref. (10).

The Use of Diagraphs in Control System Design
If we consider the set of state space equations, eq.
(1), which have have been transformed, then we have

x(s) = s x(0) + s5i A x(s) + s 1 Bu(s)

based on these three, easily ob-

(31)

and we can interpret directly the matrices s A and
s-lB in terms of a class of signal flow graphs which we
shall term digraphs (i.e. directed graphs)
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The digraph can be drawn directly from the A and B ma-
trices, such that the presence of any non-zero a11 or
b}j elements indicates the existence of a directed arc
of the graph from node j to node i.

Two important theorems apply which depend on the
definitions of cyclic and acyclic subsystems of the
graph. A cyclic subgraph is formed by a subset of the
nodes and edges such that, within that subgraph, all
nodes are mutually reachable along a directed path. An
acyclic subgraph is one in which this is not so. The
separation into these subsystems can either be done
manually for simple systems or through computer pro-
grams like APL. From the graph controllability and ob-
servability can readily be determined.

The two theorems can now be stated.

Theorem 1

The eigenvalues derived from each cyclic subsystem as a
digraph are eigenvalues of the complete system.

Theorem 2

All acyclic nodes are associated with structurally de-
termined zero eigenvalues (i.e. eigenvalues which re-
main zero independently of the numerical values of the
non-zero coefficients).

Accordingly, the transient response (i.e. the
poles) depend only on the loop gains, and the existence
of zeros depends on one or more of a number of possible
conditions (Mason rule):

a) The number of forward paths
b) The existence of loops not touching the forward

paths
c) The relative topological lengths (i.e. the number

of edges) of forward paths and loops.
Hence, these last conditions determine the aspects of
performance such as final steady state values. From
these basic rules, ref. (10) has designed a controller
for disturbance rejection for a distillation column as
an example. The reader is referred to Schizas and
Evans' paper for details.

The designed controller coincides with the control-
ler previously derived in ref. (8) based on the geome-
tric method of Wonham, but the present approach has the
added advantages that useful criteria are also avail-
able concerning pole assignment, and the 'upper limits'
of the design are clearly exhibited.

EVALUATION OF THE FOUR DESIGN METHODS
This section will cover the evaluation and compari-

son of the four previously presented design methods.
All of these produce the same elements in the control
matrix in order to obtain disturbance rejection. In
this comparison, the designers' necessary theoretical
knowledge, the condition for disturbance rejection,
computer load and handling of feed forward and pole
placement will be considered.

Wonham's method is founded directly on the geome-
trical theory. The method handles any matrices and
determines if a solution exists and then always finds
one. This theory will appear difficult and rather spe-
cialized with the result that few designers will master
this prerequisite. The method further requires the
determination of the supremal (A,B)-invariant subspace.
This step will for larger technical systems be diffi-
cult and rather incomprehensible for the designer.
Also, the solution of (A+BF)V* E V* is complicated. The
computations can be performed on a computer, however,
demanding advanced numerical methods like singular
value decomposition.

Pole placement is possible, but is not integrated into
the method. However, in a trial and error procedure,
this can turn out to be time consuming, and if an opti-
mal solution exists it is not guaranteed to be devel-
oped.

Shah's method is based on eigenvalues/eigenvector
considerations and on some theorems developed by Shah.
In this method, the designer can follow and evaluate
the various steps through the design procedure. As an
example, the designer can select the eigenvalues in
closed loop for the decoupled states. In the case where
there are more control inputs than decoupled outputs
(i.e. p<m) the computational demand is considerable and
comparable to Wonham's method. For p=m, the computa-
tional demand is smaller. The advantage of these
methods is the handling of the pole placement since
this is integrated into the design and not f.ex. a
trial and error matter. If p=m, m eigenvalues can be
arbitrarily selected, and if p<m, all eigenvalues can
be arbitrarily selected. The method requires that B1
has full rank, but there are restrictions in desire of
freedom for pole placement. There is no direct condi-
tion for feedback alone to be sufficient for disturb-
ance rejection. Some drawbacks are that a solution may
exist even though B1 is singular, and that determina-
tion of W22 from A2 and W21 from Al for p<m is a diffi-
cult mathematical operation. Finally, the selection of
the submatrices, eigenvalues and eigenvectors requires
insight into the problems of pole placement.

The simplified design method is founded on the geo-
metric theory also; but it does not require that the
designer possesses a general knowledge about this theo-
ry. Also, the design procedure and the computations are
much less demanding than Wonham's and Shah's methods,
first of all because the determination of the supremal
(A,B)-invariable subspace is avoided. In the method,
the linear system matrices are separated into two sub-
matrices. The first corresponding to the selected de-
coupled states and the second corresponding to the rest
of the states. The potential of providing complete
disturbance decoupling through feedback only or if
necessary supplemented with feedforward is apparent
from these two submatrices. This is much more transpar-
ent than Wonham's method. Since F is determined column
by column, this is fairly easy. Pole placement is pos-
sible, but is not included in the method. In comparison
to Wonham's method, where the designer easily looses
the insight into the system, the simplified method of-
fers the designer greater insight into how and which
elements must be determined in order to establish
disturbance decoupling and which element is available
for pole placement and possibly stabilization of the
closed loop system. The method applies to a broader
class of problems than the eigenvalue/eigenvector
method, since the requirement B* has full rank, is less
restricting than the requirement B1 is nonsingular. A
drawback is that an F may exist even though B* does not
have full rank and further, there are restrictions in
degrees of freedom for pole placement.

The digraph method also gives the designer good in-
sight in and understanding of the system through which
this knowledge is easily implemented. Through the di-
graph the designer easily notes which couplings between
the different states need to be disconnected or de-
coupled to avoid potential disturbances. The digraph
indicates directly if complete disturbance rejection is
possible through feedback only or if feedforward is
necessary. Drawing of the digraph is simple so it is
relatively easy to tell if geometric control is suffi-
cient or not. Design of the geometric controller is
based on a number of equations, derived through the
logical matrices by comparison with the element in the
closed loop matrices which must be zero.
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The digraph method has not integrated pole placement.
For larger technical systems, however, the derivation
of the many equations is difficult to overlook. Here
the handling of the equations involved through matrix
methods are to be preferred.

There is no simple conclusion on the previous dis-
cussion since this will depend on the weighting of the
elements involved, particularly the designers' experi-
ence with and insight into the various design methods.
The major arguments of the discussion is collected in
the table.

CONCLUSION

Based on the evaluation above, no simple conclusion
can be made, rather the choise of the most appropriate
design method will depend on the background of the
designer and the available computer programs. The table
will here serve as an inmnediate available guideline for
the designer. In industrial praxis the designer will
consider other control methods as well. Here geometric
control like many other control methods must be recog-
nized to assume that a mathematical model is available.
This will, of course, be a shortcoming in many cases.
It further requires the model to possess a certain
accuracy during the normal operation of the plant.
Nevertheless, if these requirements are met, geometric
control offers an attractive control method, particu-
larly for disturbance rejection. The evaluation above
can offer an easier introduction to the selection of
the proper design method.
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Method Wonham Shah Simplified Digraph

Theoretical basis The general geome- Eigenvalue/eigen- The geometrical Graph theory
trical theory as vector consideration theory, however,
expressed by Wonham and Shah's theorems less complicated

Conditions for Range of D to belong 81 nonsingular B* full rank Is determined from
disturbance re- to supremal (A,B)- the digraph
jections invariant subspace

Designers insight Little insight imme- Good insight since Like eigenvalue/ Like eigenvalue/
through design diately; high level the method indicates eigenvector method eigenvector method
process of abstraction which states to be

decoupled

Computational Large due to deriva- For p<m the demand Modest, since the Like simplified
demand tion of the supremal is large. For p=m method results in

invariant subspace the demand is mode- solution of simple
rate linear equations

Handling of pole Is not Easy. Integrated Is not integrated Is not integrated
placement integrated in method

Potential for Well suited Well suited Well suited Difficult to implement
computer solution
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