21,350 research outputs found

    A multi-agent system in education facility design

    Get PDF
    This paper deals with a multi-agent system which supports the designer in solving complex design tasks. The behaviour of design agents is modelled by sets of grammar rules. Each agent uses a graph grammar or a shape grammar and a database of facts concerning the subtask it is responsible for. The course of the design process is determined by the interaction between specialised agents. Space layouts of designs are represented by attributed graphs encoding both topological structures and semantic properties of solutions. The agents work in parallel on the common graph, independently generating layouts of different design components while specified node labels evoke agents using shape grammars. The agents’ cooperation allows them to combine a form-oriented approach with a functional-structural one in the design process, where the agents generate the general 3D form of the object based on design requirements together with the space layout based on the functional aspects of the solution. Based on the given design criteria, the agents search for admissible solutions within the design space that constitutes their operating environment. The proposed approach is illustrated by the example of designing kindergarten facilities

    Probabilistic mathematical formula recognition using a 2D context-free graph grammar

    Get PDF
    We present a probabilistic framework for the mathematical expression recognition problem. The developed system is flexible in that its grammar can be extended easily thanks to its graph grammar which eliminates the need for specifying rule precedence. It is also optimal in the sense that all possible interpretations of the expressions are expanded without making early commitments or hard decisions. In this paper, we give an overview of the whole system and describe in detail the graph grammar and the parsing process used in the system, along with some preliminary results on character, structure and expression recognition performances

    Principal manifolds and graphs in practice: from molecular biology to dynamical systems

    Full text link
    We present several applications of non-linear data modeling, using principal manifolds and principal graphs constructed using the metaphor of elasticity (elastic principal graph approach). These approaches are generalizations of the Kohonen's self-organizing maps, a class of artificial neural networks. On several examples we show advantages of using non-linear objects for data approximation in comparison to the linear ones. We propose four numerical criteria for comparing linear and non-linear mappings of datasets into the spaces of lower dimension. The examples are taken from comparative political science, from analysis of high-throughput data in molecular biology, from analysis of dynamical systems.Comment: 12 pages, 9 figure

    Structure induction by lossless graph compression

    Full text link
    This work is motivated by the necessity to automate the discovery of structure in vast and evergrowing collection of relational data commonly represented as graphs, for example genomic networks. A novel algorithm, dubbed Graphitour, for structure induction by lossless graph compression is presented and illustrated by a clear and broadly known case of nested structure in a DNA molecule. This work extends to graphs some well established approaches to grammatical inference previously applied only to strings. The bottom-up graph compression problem is related to the maximum cardinality (non-bipartite) maximum cardinality matching problem. The algorithm accepts a variety of graph types including directed graphs and graphs with labeled nodes and arcs. The resulting structure could be used for representation and classification of graphs.Comment: 10 pages, 7 figures, 2 tables published in Proceedings of the Data Compression Conference, 200

    Event-driven grammars: Relating abstract and concrete levels of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-007-0051-2In this work we introduce event-driven grammars, a kind of graph grammars that are especially suited for visual modelling environments generated by meta-modelling. Rules in these grammars may be triggered by user actions (such as creating, editing or connecting elements) and in their turn may trigger other user-interface events. Their combination with triple graph transformation systems allows constructing and checking the consistency of the abstract syntax graph while the user is building the concrete syntax model, as well as managing the layout of the concrete syntax representation. As an example of these concepts, we show the definition of a modelling environment for UML sequence diagrams. A discussion is also presented of methodological aspects for the generation of environments for visual languages with multiple views, its connection with triple graph grammars, the formalization of the latter in the double pushout approach and its extension with an inheritance concept.This work has been partially sponsored by the Spanish Ministry of Education and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN 2006-09678)

    Robot Navigation in Unseen Spaces using an Abstract Map

    Full text link
    Human navigation in built environments depends on symbolic spatial information which has unrealised potential to enhance robot navigation capabilities. Information sources such as labels, signs, maps, planners, spoken directions, and navigational gestures communicate a wealth of spatial information to the navigators of built environments; a wealth of information that robots typically ignore. We present a robot navigation system that uses the same symbolic spatial information employed by humans to purposefully navigate in unseen built environments with a level of performance comparable to humans. The navigation system uses a novel data structure called the abstract map to imagine malleable spatial models for unseen spaces from spatial symbols. Sensorimotor perceptions from a robot are then employed to provide purposeful navigation to symbolic goal locations in the unseen environment. We show how a dynamic system can be used to create malleable spatial models for the abstract map, and provide an open source implementation to encourage future work in the area of symbolic navigation. Symbolic navigation performance of humans and a robot is evaluated in a real-world built environment. The paper concludes with a qualitative analysis of human navigation strategies, providing further insights into how the symbolic navigation capabilities of robots in unseen built environments can be improved in the future.Comment: 15 pages, published in IEEE Transactions on Cognitive and Developmental Systems (http://doi.org/10.1109/TCDS.2020.2993855), see https://btalb.github.io/abstract_map/ for access to softwar
    corecore